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Classical spin systems
and Monte Carlo simulations

2Friday, October 24, 14



Classical spin models
Lattice models with “spin” degrees of freedom at the vertices
Classified by type of spin:
• Ising model: discrete spins, normally two-state σi = -1, +1
• XY model: planar vector spins (fixed length)
• Heisenberg model: 3-dimensional vector spins.

Statistical mechanics
• spin configurations C
• energy E(C)
• some quantity Q(C)
• temperature T (kB=1)

�Q⇥ =
1
Z

�

C

Q(C)e�E(C)/T

Z =
�

C

e�E(C)/T

E =
�

�ij⇥

Jij�i�j

E =
�

�ij⇥

Jij
⌅Si · ⌅Sj =

�

�ij⇥

Jij cos(�i ��j)

E =
�

�ij⇥

Jij
⌅Si · ⌅Sj

(Ising)

(XY)

(Heisenberg)
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� 2.269

Tc

J
=

2
ln(1 +

�
2)

• first-order transition versus h (at h=0) for T<Tc 
• continuous transition at h=0

For 2D square
lattice with 
nearest-neighbor
couplings

J = Ji =
�

j

JijMean-field solution: m = tanh[(Jm + h)/T ], (m = ��i⇥)

• Here J is the 
   sum of local
   couplings

J =
X

j

Jij

Phase transition in the Ising model
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Monte Carlo simulation of the Ising model
The Metropolis algorithm 
[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1→ C2→ C3→ C4→...
• Cn+1 obtained by modifying (updating) Cn

Starting from any configuration, such a repeated stochastic process
leads to configurations distributed according to W
• the process has to be ergodic

- any configuration reachable in principle
• it takes some time to reach equilibrium 
   (typical configurations of the Boltzmann distribution)

Pchange(A� B)
Pchange(B � A)

=
W (B)
W (A) W (A) = e�E(A)/T

• changes satisfy the detailed-balance principle 

•⇥ •
Pchange(A� B) = Pselect(B|A)Paccept(B|A)

Pselect = 1/N, Paccept = min[W (B)/W (A), 1]

W (B)

W (A)
= e��E/T = e[E(A)�E(B)]/T is easy to calculate (only depends

on spins interacting with lipped spin)
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Metropolis algorithm for the Ising model. For each update perform:
• select a spin i at random; consider flipping it σi → -σi
• compute the ratio R=W(σ1,...-σi,...,σN)/W(σ1,...σi,...,σN)

- for this we need only the neighbor spins of i
• generate random number 0<r≤1; accept flip if r<R (stay with old config else)
• repeat (many times...)

Example
- 128×128 lattice
   (N=16384) at T/J=4
   (> Tc/J ≈ 2.27)

Simulation time unit
(Monte Carlo step or sweep)
- N spin flip attempts

“Measure” physical observables
(averaged over time) on the
generated configurations
- begin after equilibration 
   (when configurations are
   typical representatives of
   the Boltzmann distribution)
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Going closer to Tc
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Going below Tc....
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Staying at same
T, speeding up
time by factor 10
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Squared magnetization for L×L Ising lattices

critical scaling
(non-trivial 
power-law)

disordered
(trivial power-
law 1/N = 1/L-2)

ordered
(size independent)

Time series of simulation data; magnetization vs simulation time for T<Tc

Time-scale of m reversals
diverges when L →∞
- symmetry breaking

Compute time-average of <m2> to carry out finite-size scaling

M
N

= m =
1
N

N�

i=1

�i

Order parameter
(magnetization)
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Quantum spin systems, 
quantum antiferromagnets
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Quantum spin models
• the spins have three (x,y,z) components, satisfy commutation relations
• interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components  

H =
�

⇥ij⇤

Jij
⌅Si · ⌅Sj =

�

⇥ij⇤

Jij [Sz
i Sz

j + 1
2 (S+

i S�
j + S�

i S+
j )]

H =
�

⇥ij⇤

Jij [Sx
i Sx

j + Sy
i Sy

j ] = 1
2

�

⇥ij⇤

Jij [S+
i S�

j + S�
i S+

j ]

H =
�

�ij⇥

JijS
z
i Sz

j = 1
4

�

�ij⇥

Jij�i�j (Ising)

(XY)

(Heisenberg)

+ many modifications and extensions... and local spin S=1/2,1,3/2,....
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Quantum antiferromagnets
Nearest-neighbor <i,j> interactions (Heisenberg) on some lattice 

Non-bipartite
- no bipartition is possible 
- frustrated antiferromagnetic interactions
- different kinds of order or no long-range order (spin liquid)

Lattices can be classified as

SA
SB

FIGURE 48. Effective description of the rotationally invariant Néel vector ms in terms of two large
spins, SA, SB, corresponding to the sum of the spins on the two sublattices. There is an effective antiferro-
magnetic coupling between these spins, leading to a singlet ground state and a “tower” of quantum rotor
excitations of total spin S = 1,2, . . . at energies ΔS ∼ S(S+1)/N above the ground state.

thus allowing for the symmetry breaking that is the starting point for spin-wave theory. In
the thermodynamic limit, the direction of the ordering vector is fixed (as the time scale
associated with its rotations diverges [169]), and the quantum rotor-states are then in
practice not accessed. They are neglected in standard spin-wave calculations (discussed
in Sec. 2.1) from the outset because the order is by construction locked to the z direction.
One can still access the rotor energies in spin-wave theory, by considering systems in
an external magnetic field, tuned to give a ground state with total magnetization Sz = S
[170, 171]. The rotor states are of great significance in finite clusters.
The effective coupling Jeff in (219) for a given system can be determined if we can

relate it to some physical quantity which depends on the rotor excitations. An obvious
choice is the uniform magnetic susceptibility, χ = d〈mz〉/dh. Calculating it for the two-
spin model when T → 0 gives χ = 3/Jeff. For the real Heisenberg model on a finite
cluster in dimensions d ≥ 2, χ should be dominated by the quantum rotor states when
T & 1/L, because the lowest spin wave energy scales as ∝ 1/L (while the quantum
rotor states scale as 1/Ld). Thus, we can write the effective quantum rotor tower for a
Heisenberg model with Néel ground state as

ΔS =
S(S+1)
3χN

, (220)

where χ should be evaluated in the limitN→∞ (first) and T → 0. Note that I= (3/2)Nχ
here plays the role of a moment of inertia, giving an analogy between (220) and the
energy spectrum of a rigid rotor in quantum mechanics.
The relation (220) can also be used as a way to compute the susceptibility of a

Heisenberg models numerically; by extracting the lowest energies as a function of S (for
small S, where the quantum-rotor mapping should apply). More precisely, the small-S
energies gives an estimate for χ as the N→ ∞, S→ 0 limit of the quantity χ(S,N):

1
χ(S,N)

=
3NS(ES−E0)
S(S+1)

. (221)

Here ES denotes the lowest energy for total spin S. Note that we have to subtract the
ground state energy (S = 0) because in the two-spin effective model we only computed
the excitation energies ΔS with respect to the ground state energy (and the latter is not
given accurately by the two-spin model). One would expect an S-independent behavior
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Bipartite 
- nearest-neighbors i,j always 
  on different sublattices
- compatible with Neel order
- but other states possible

Fully ordered Neel state (ground state of H for classical spins) 
is not an eigenstate of H even on a bipartite lattice
- if there is order at T=0 it is reduced by quantum fluctuations 
Mermin-Wagner theorem (on breaking a continuous symmetry) implies:
- No Neel order in 1D Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at T>0 in 3D

H = J
X

hi,ji

~Si · ~Sj , J > 0

13Friday, October 24, 14



Path Integrals in 
quantum statistical mechanics

�Q⇥ =
1
Z

Tr
�

Qe�H/T
⇥

Quantum statistical mechanics

Z = Tr
⇥

e�H/T
⇤

=
M�1�

n=0

e�En/T

Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies 
- we may be especially interested in the ground state (T→0)
   (for classical systems the ground state is often trivial)
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Quantum Monte Carlo

hAi = Tr{Ae��H}
Tr{e��H} !

P
c AcWcP
Wc

Rewrite the quantum-mechanical expectation value into a classical form

Different ways of doing it
- World-line methods for spins and bosons
- Stochastic series expansion for spins and bosons
- Fermion determinant methods
For ground state calculations we can also do projection from a “trial state”
| mi ⇠ Hm| 0i

| �i ⇠ e��H | 0i

| mi ! |0i when m ! 1

| �i ! |0i when � ! 1

Monte Carlo sampling in the space {c} with weights Wc (if positive-definite...)
(“sign problem” if
not the case)

Particularly simple and efficient schemes exist for S=1/2 models

H = �J

NbX

b=1

�1
4
� Si(b) · Sj(b)

�

No sign problem on bipartite lattices

(+ certain multi-spin terms)
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Path integrals in quantum statistical mechanics

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��
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Example: hard-core bosons

H = K = �
�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 
H = �2

�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

world line moves for 
Monte Carlo sampling

“World line” representation of

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧
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⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimator

Z =
1

Z

X

{↵}

h↵0|e��⌧ |↵L�1i · · · h↵2|e��⌧H |↵1ih↵1|e��⌧H |↵0i

For any quantity diagonal in the occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

Measure quantities on all slices and average
- in practice full averaging may take too long and OK to do partial averages
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There should be of the order βN “jumps” of the worldlines

Special case: term Kij in the kinetic energy

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
, ⇥K⇤ = �⇥nK⇤

�

Off-diagonal expectation values

⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

In general the states α1,...,αn contributing to Z will not contribute to <A>
- more complicated measurements

Multiply and divide by the weight

hAi = 1

Z

X

{↵}

h↵0|e��⌧ |↵L�1i · · · h↵1|e��⌧H |↵0i
h↵0|e��⌧ |↵L�1i · · · h↵1|e��⌧HKij |↵0i
h↵0|e��⌧ |↵L�1i · · · h↵1|e��⌧H |↵0i

=
1

Z

X

{↵}

W ({↵}) h↵0|e��⌧ |↵L�1i · · · h↵1|e��⌧HKij |↵0i
h↵0|e��⌧ |↵L�1i · · · h↵1|e��⌧H |↵0i

1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}e��⌧KKij ⇡ Kij
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Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)
•consider probability of inserting/removing 

events within a time window

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
in the continuum

⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996)
     Beard & Wiese (1996)

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅
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Stochastic series expansion (SSE)
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e��H =
⇥�

n=0

(��)n

n!
Hn

Similar to the path integral;                          and weight factor outside   1���H ⇥ H

Z =
⇥�

n=0

(�⇥)n

n!

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

Alternative to path integral: Series expansion representation

Start from the Taylor expansion

For hard-core bosons the (allowed) path weight is W ({�}n) = ⇥n/n!

C = ⇥n2⇤ � ⇥n⇤2 � ⇥n⇤

From this follows: narrow n-distribution with ⇥n⇤ � N�, ⇥n �
�

N�

(approximation-free
method from the outset)

For any model, the energy is

one more “slice” to sum over here

relabel terms to “get rid of” extra slice

E =
1
Z

⇥�

n=0

(�⇥)n

n!

�

{�}n+1

⇤�0|H|�n⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

= � 1
Z

⇥�

n=1

(�⇥)n

n!
n

⇥

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅ =
⇤n⌅
⇥

this is the operator we “measure”

�
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Fixed-length scheme
• n fluctuating → varying size of the configurations
• the expansion can be truncated at some nmax=M (exponentially small error)
• cutt-off at n=M, fill in operator string with unit operators H0=I

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

=�

Here n is the number of Hi, i>0  instances in the sequence of M operators

✓
M

n

◆�1

=
n!(M � n)!

M !

Z =
X

{↵}M

X

{Hi}

(��)n(M � n)!

M !
h↵0|Hi(M)|↵M�1i · · · h↵1|Hi(1)|↵0i
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Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice
bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2
(off-diagonal operators)
in the sequence
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Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme (string length = L now)

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:

s(p) = operator-index string
• s(p) = 2*b(p) + a(p)-1
• diagonal; s(p) = even
• off-diagonal; s(p) = off

σ(i) = spin state, i=1,...,N
• only one has to be stored

W>0 (n2 even) for bipartite lattice 
Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum 
• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤
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Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 
the spin states before (below) and 
after (above) an operator has acted

X( ) = vertex list
• operator at p→X(v)
   v=4p+l, l=0,1,2,3
• links to next and
   previous leg

Spin states between operations are redundant; represented by links
• network of linked vertices will be used for loop updates of vertices/operators
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Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>
• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power
• n → n+1 (a=0 → a=1)
• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥
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Off-diagonal updates

Operator-loop 
update
• Many spins  

and operators 
can be 
changed 
simultaneously

• can change 
winding 
numbers

Local update
Change the type
of two operators
• constraints
• inefficient
• cannot change 

winding 
numbers
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Determination of the cut-off L
• adjust during equilibration
• start with arbitrary (small) n

Keep track of number of operators n
• increase L if n is close to current L
• e.g., L=n+n/3

Example 
•16×16 system, β=16 ⇒
• evolution of L
• n distribution after 
equilibration

• truncation is no 
approximation
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Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains
• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)
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Valence bonds and 
Ground State Projection
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|Vr� =
N/2�

b=1

(irb, jrb), r = 1, . . . (N/2)!

The valence bond basis for S=1/2 spins
(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/

⌃
2Valence-bonds between sublattice  A, B sites

A
B

Basis states; singlet products

|�� =
�

r

fr|Vr�

The valence bond basis is overcomplete and non-orthogonal
• expansion of arbitrary singlet state is not unique

(all fr positive for non-frustrated system)

�Vl|Vr⇥|Vr�|Vl�

All valence bond states overlap with each other
�Vl|Vr⇥ = 2N��N/2 N� = number of loops in overlap graph

Spin correlations from loop structure
⇤Vl|⇤Si · ⇤Sj |Vr⌅

⇤Vl|Vr⌅
=

�
3
4 (�1)xi�xj+yi�yj

0
(i,j in same loop)

(i,j in different loops)

More complicated matrix elements 
(e.g., dimer correlations) are also 
related to the loop structure
K.S.D. Beach and  A.W.S., 
Nucl. Phys. B 750, 142 (2006)
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(-H)n projects out the ground state from an arbitrary state

H =
�

�i,j⇥

⌅Si · ⌅Sj = �
�

�i,j⇥

Hij , Hij = (1
4 � ⌅Si · ⌅Sj)

S=1/2 Heisenberg model

Project with string of bond operators
�

{Hij}

n⇥

p=1

Hi(p)j(p)|�⇥ � r|0⇥ (r = irrelevant)

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

Action of bond operators

Hab|...(a, b)...(c, d)...� = |...(a, b)...(c, d)...�

Hbc|...(a, b)...(c, d)...� =
1
2

|...(c, b)...(a, d)...�
A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ⇥i⇤j⌅ � | ⇤i⇥j⌅)/
⌃

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(�H)n|�⇤ = (�H)n
�

i

ci|i⇤ ⇥ c0(�E0)n|0⇤
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Expectation values: �A⇥ = �0|A|0⇥
Strings of singlet projectors

Pk =
n�

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
�

k

Pk|Vr⇤ =
�

k

Wkr|Vr(k)⇤ ⇥ (�E0)nc0|0⇤

�

g

⇤Vl|P �
g =

�

g

⇤Vl(g)|Wgl ⇥ ⇤0|c0(�E0)n

|Vr��Vl| A

- Monte Carlo sampling 
   of operator strings
- Estimators based on 
   transition graphs

6-spin chain example: �A⇥ =
�

g,k�Vl|P �
g APk|Vr⇥�

g,k�Vl|P �
g Pk|Vr⇥

=
�

g,k WglWkr�Vl(g)|A|Vr(k)⇥
�

g,k WglWkr�Vl(g)|Vr(k)⇥
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Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
• good valence-bond trial wave functions can be used
• larger systems accessible
• sample spins, but measure using the valence bonds

|����|

A

More efficient ground state QMC algorithm → larger lattices 
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T>0 and T=0 algorithms side-by-side

• Computer implementations similar
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periodic time boundary conditions

Finite-temperature QMC 
(world lines, SSE,...)

!22"# and there is no explicit dependence in Eq. !26" on the
operator string !! ," ,e , f" and spin !i , j" indices. An example
configuration is shown in Fig. 4. On a bipartite lattice, the
weights are positive since minus signs present in the states
$Eq. !6"# compensate those arising from an odd number of
off-diagonal operators $Eq. !25"# !or, equivalently, all signs
could be eliminated by a sublattice rotation2".

C. Sampling method

We now briefly describe the Monte Carlo sampling pro-
cedures. Starting with VB configurations Vr , Vl !where nor-
mally one would take Vr=Vl for simplicity" and compatible
spin configurations Zr=Zl, an initial string containing only
diagonal operators Hab!1" can be used !consistent with the
constraint that each operator must act on two antiparallel
spins". Successive configurations maintaining the constraints
are generated with three types of updates.

In the first update—the “diagonal update”—the combined
string P!"

ef
= !P"

f
"TP!

e
!where the transpose T of an operator

sequence just corresponds to writing it in the reverse order,
corresponding to acting with it on a bra state instead of a ket"
containing 2m operators is traversed and each diagonal op-
erator in it is updated !moved to a randomly selected bond",
under the condition that it acts on antiparallel spins. This step
corresponds to changing the vertex breakup in the original
world-line loop scheme.1,2 As in the SSE method,5,10 the con-
straints are checked by keeping the single state Z!p−1",
which is needed for moving a diagonal operator at location p
in the string. This state is obtained by acting on the originally
stored ket spin configuration Zr!0"=Zr with the first p opera-
tors in the sequence. It is changed !by flipping two spins"
whenever an off-diagonal operator is encountered in the
course of traversing the positions p=1, . . . ,2m. At the end of
this procedure, the stored bra state is obtained, Zr!2m"=Zl,
for a valid configuration.

In a second updating stage—the loop update—a linked
list of operator vertices is first constructed. A vertex consists
of the spin states “entering” and “exiting” an operator, as
shown in Fig. 4. They connect, forming loops. The only dif-
ference with respect to the operator loops in the SSE method
is that a loop can now be connected to the ket or bra VB
state, and the valence bonds constitute parts of such loops

!replacing the periodic boundary conditions used at T#0".
To keep nonzero !indeed, constant" matrix elements of the
operators Hab, all spins on a loop have to be flipped together,
in the process changing also Hab!1"↔Hab!2". Each loop is
flipped with probability 1/2. In practice, all loops are con-
structed, and the random decision of whether or not to flip a
loop is made before the loop is constructed. Vertices in a
loop that is not to be flipped are just flagged as visited so that
the same loop is not traversed more than once !i.e., a loop
construction is always started from a vertex leg that has not
yet been visited".

The reason for constructing all the clusters and flipping
each with probability 1/2, instead of generating single clus-
ters starting from random seed locations and flipping them
with probability 1 !as in the classical Wolff method31", is that
the de facto loop structure is only changed when performing
the diagonal updates. One would therefore potentially gener-
ate the same cluster several times, which would lead to lower
efficiency compared to uniquely identifying all clusters and
flipping each at most once. In principle, one could modify
the algorithm with combined diagonal and cluster updates
but this is more complicated and would probably not lead to
improvements in efficiency in most cases.

A flipped loop including one or several VBs will cause
spin flips in the stored spin configurations Zl or Zr. In the
loop updating procedure, we do not have to explicitly keep
track of any other spins than those in Zl and Zr. The four
spins at the operators !the vertex legs" are irrelevant at the
loop updating stage because all the vertices automatically
involve only operations on antiparallel spins, both before and
after a loop flip. For each vertex encountered when con-
structing a loop, we therefore simply have to change the
operator-type index, 1↔2, in the list of operators !i.e., the
same list P!"

ef
used in the diagonal update and to construct

the linked vertex list".
The third type of update—the state update—is identical to

the VB reconfigurations described in Sec. III for the varia-
tional calculation. Normally one would use an amplitude-
product state with coefficients in Eq. !9", which enter in the
weight $Eq. !26"#. Reconfigurations of the bonds can be car-
ried out with either two-bond or bond-loop moves, as ex-
plained in Sec. III. They only change the loop connections at
the VB “end caps.”

D. Measuring observables

When measuring operator expectation values, one can go
back to a pure VB !=loop" representation, using the estimator
$Eq. !23"#. This corresponds to summing over all loop orien-
tations. Most quantities of interest can be expressed in terms
of the loops in the transposition graph corresponding to
%Vl!"" &Vr!!"'.2,23,29,30 Note that these transposition-graph
loops can also be obtained from the “space-time” loops con-
structed in the updates, by connecting the sites !in practice,
just assigning a label, the loop number $i" crossed by the
same loop at the propagation midpoint !indicated by a
dashed line in Fig. 4". The space-time loops can also provide
access to imaginary-time correlation functions2 in the ground
state !see Sec. IV A". Since there are no differences in the

FIG. 4. !Color online" A VB-spin-operator configuration con-
tributing to %%&!−H"2m&%' for a four-site system with m=2. The
arcs to the left and right indicate VB states %Vl&, &Vr' and the two
columns of filled and open circles represent ↑ and ↓ spins of com-
patible spin states %Zj

l
&, &Zj

r
'. The spins at the four operators !verti-

ces" are also indicated. There are three loops, part of which consist
of VBs. Expectation values are evaluated at the midpoint indicated
by the dashed line.
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open boundaries capped by 
valence bonds (2-spin singlets)
[AWS, HG Evertz, 2010]

Ground state projection

Trial state can conserve relevant 
ground state quantum numbers 
(S=0, k=0,...)

X

↵�

f�f↵h�|(�H)m|↵i
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Starting point: S=1/2 antiferromagnetic Heisenberg model
H = J

�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Sublattice magnetization

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988
ms = 0.30(2)
� 60 % of classical value
AWS & HG Evertz 2010

ms = 0.30743(1)

L⨉L lattices up to 256⨉256, T=0
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