Institute of Physics, Chinese Academy of Sciences, Beijing, October 24, 2014

Introduction to quantum spin systems and quantum Monte Carlo simulations

Anders W Sandvik, Boston University

- Classical spins and classical Monte Carlo
- Path integrals in quantum statistical mechanics
- Stochastic Series expansion (incl technical details)
- Ground-state projection with valence bonds

Review article on quantum spin systems and numerical methods: ArXiv:1101.3281

Classical spin systems and Monte Carlo simulations

Classical spin models

Lattice models with "spin" degrees of freedom at the vertices

Classified by type of spin:

- Ising model: discrete spins, normally two-state $\sigma_{i}=-1,+1$
- XY model: planar vector spins (fixed length)
- Heisenberg model: 3-dimensional vector spins.

Statistical mechanics

- spin configurations C
- energy E(C)
- some quantity $\mathbf{Q (C)}$

- temperature $\mathrm{T}_{\left(\mathrm{k}_{\mathrm{B}}=1\right)}$
$\langle Q\rangle=\frac{1}{Z} \sum_{C} Q(C) \mathrm{e}^{-E(C) / T}$

$$
\begin{aligned}
& E=\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j} \quad \text { (Ising) } \\
& E=\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}=\sum_{\langle i j\rangle} J_{i j} \cos \left(\Theta_{i}-\Theta_{j}\right) \\
& E=\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j} \quad \text { (Heisenberg) }
\end{aligned}
$$

$Z=\sum_{C} \mathrm{e}^{-E(C) / T}$

Phase transition in the Ising model

(b)

For 2D square lattice with nearest-neighbor couplings

$$
\begin{aligned}
\frac{T_{c}}{J} & =\frac{2}{\ln (1+\sqrt{2})} \\
& \approx 2.269
\end{aligned}
$$

- first-order transition versus $h(a t h=0)$ for $T<T_{c}$
- continuous transition at $\mathrm{h}=0$

Mean-field solution: $J=J_{i}=\sum_{j} J_{i j} \quad m=\tanh [(J m+h) / T], \quad\left(m=\left\langle\sigma_{i}\right\rangle\right)$

- Here J is the sum of local couplings

$$
J=\sum_{j} J_{i j}
$$

Monte Carlo simulation of the Ising model

The Metropolis algorithm

[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]
Generate a series of configurations (Markov chain); $\mathrm{C}_{1} \rightarrow \mathrm{C}_{2} \rightarrow \mathrm{C}_{3} \rightarrow \mathrm{C}_{4} \rightarrow \ldots$

- $\mathrm{C}_{\mathrm{n}+1}$ obtained by modifying (updating) C_{n}
- changes satisfy the detailed-balance principle

$$
\begin{aligned}
& \frac{P_{\text {change }}(A \rightarrow B)}{P_{\text {change }}(B \rightarrow A)}=\frac{W(B)}{W(A)} \quad W(A)=\mathrm{e}^{-E(A) / T} \\
& P_{\text {change }}(A \rightarrow B)=P_{\text {select }}(B \mid A) P_{\text {accept }}(B \mid A) \\
& P_{\text {select }}=1 / N, \quad P_{\text {accept }}=\min [W(B) / W(A), 1]
\end{aligned}
$$

$\frac{W(B)}{W(A)}=e^{-\Delta_{E} / T}=e^{[E(A)-E(B)] / T}$ is easy to calculate (only depends on spins interacting with lipped spin)

Starting from any configuration, such a repeated stochastic process leads to configurations distributed according to W

- the process has to be ergodic
- any configuration reachable in principle
- it takes some time to reach equilibrium
(typical configurations of the Boltzmann distribution)

Metropolis algorithm for the Ising model. For each update perform:

- select a spin i at random; consider flipping it $\sigma_{i} \rightarrow-\sigma_{i}$
- compute the ratio $\mathbf{R}=\mathbf{W}\left(\sigma_{1}, \ldots-\sigma_{i}, \ldots, \sigma_{N}\right) / \mathbf{W}\left(\sigma_{1}, \ldots . \sigma_{i}, \ldots, \sigma_{N}\right)$
- for this we need only the neighbor spins of i
- generate random number $0<r \leq 1$; accept flip if $r<R$ (stay with old config else)
- repeat (many times...)

Simulation time unit

(Monte Carlo step or sweep)

- N spin flip attempts
"Measure" physical observables (averaged over time) on the generated configurations
- begin after equilibration (when configurations are typical representatives of the Boltzmann distribution)

Example

- 128×128 lattice

$$
\begin{aligned}
& (N=16384) \text { at } T / J=4 \\
& \left(>T_{c} / J \approx 2.27\right)
\end{aligned}
$$

Going below Tc....

$$
\mathrm{T}=2.00 \quad 1
$$

Staying at same T , speeding up time by factor 10

Time series of simulation data; magnetization vs simulation time for $\mathbf{T}<\boldsymbol{T}_{c}$

Order parameter (magnetization)
$\frac{\mathbf{M}}{\mathbf{N}}=\mathbf{m}=\frac{1}{\mathbf{N}} \sum_{\mathrm{i}=1}^{\mathbf{N}} \sigma_{\mathrm{i}}$
Time-scale of m reversals diverges when $L \rightarrow \infty$

- symmetry breaking

Compute time-average of $\left\langle\mathrm{m}^{2}\right\rangle$ to carry out finite-size scaling
Squared magnetization for $L \times L$ Ising lattices

ordered (size independent)
critical scaling (non-trivial power-law) disordered (trivial powerlaw $1 / N=1 / L^{-2}$)

Quantum spin systems, quantum antiferromagnets

Quantum spin models

- the spins have three (x, y, z) components, satisfy commutation relations
- interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components

$$
\begin{align*}
H & =\sum_{\langle i j\rangle} J_{i j} S_{i}^{z} S_{j}^{z}=\frac{1}{4} \sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j} \\
H & =\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right]=\frac{1}{2} \sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right] \tag{XY}\\
H & =\sum_{\langle i j\rangle} J_{i j} \vec{S}_{i} \cdot \vec{S}_{j}=\sum_{\langle i j\rangle} J_{i j}\left[S_{i}^{z} S_{j}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right]
\end{align*}
$$

(Heisenberg)

+ many modifications and extensions... and local spin $S=1 / 2,1,3 / 2, \ldots$.

Quantum antiferromagnets

Nearest-neighbor <i,j> interactions (Heisenberg) on some lattice

$$
H=J \sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}, \quad J>0
$$

Lattices can be classified as

Bipartite

- nearest-neighbors i,j always on different sublattices
- compatible with Neel order
- but other states possible

Non-bipartite

- no bipartition is possible
- frustrated antiferromagnetic interactions
- different kinds of order or no long-range order (spin liquid)

Fully ordered Neel state (ground state of H for classical spins)
is not an eigenstate of H even on a bipartite lattice

- if there is order at $\mathrm{T}=0$ it is reduced by quantum fluctuations

Mermin-Wagner theorem (on breaking a continuous symmetry) implies:

- No Neel order in 1D Heisenberg model
- Neel order possible only at T=0 in 2D system
- Order possible also at $T>0$ in 3D

Path Integrals in quantum statistical mechanics

Quantum statistical mechanics

$$
\langle Q\rangle=\frac{1}{Z} \operatorname{Tr}\left\{Q \mathrm{e}^{-H / T}\right\} \quad Z=\operatorname{Tr}\left\{\mathrm{e}^{-H / T}\right\}=\sum_{n=0}^{M-1} \mathrm{e}^{-E_{n} / T}
$$

Large size M of the Hilbert space; $\mathrm{M}=2^{\mathrm{N}}$ for $\mathrm{S}=1 / 2$

- difficult problem to find the eigenstates and energies
- we may be especially interested in the ground state ($\mathrm{T} \rightarrow 0$) (for classical systems the ground state is often trivial)

Quantum Monte Carlo

Rewrite the quantum-mechanical expectation value into a classical form

$$
\langle A\rangle=\frac{\operatorname{Tr}\left\{A e^{-\beta H}\right\}}{\operatorname{Tr}\left\{e^{-\beta H}\right\}} \rightarrow \frac{\sum_{c} A_{c} W_{c}}{\sum W_{c}}
$$

Monte Carlo sampling in the space $\{\mathbf{c}\}$ with weights $\mathbf{W}_{\mathbf{c}}$ (if positive-definite...)

Different ways of doing it

- World-line methods for spins and bosons
("sign problem" if
not the case)
- Stochastic series expansion for spins and bosons
- Fermion determinant methods

For ground state calculations we can also do projection from a "trial state"

$$
\begin{array}{ll}
\left|\Psi_{m}\right\rangle \sim H^{m}\left|\Psi_{0}\right\rangle & \left|\Psi_{m}\right\rangle \rightarrow|0\rangle \text { when } m \rightarrow \infty \\
\left|\Psi_{\beta}\right\rangle \sim \mathrm{e}^{-\beta H}\left|\Psi_{0}\right\rangle & \left|\Psi_{\beta}\right\rangle \rightarrow|0\rangle \text { when } \beta \rightarrow \infty
\end{array}
$$

Particularly simple and efficient schemes exist for $S=1 / 2$ models

$$
H=-J \sum_{b=1}^{N_{b}}\left(\frac{1}{4}-\mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)}\right) \quad(+ \text { certain multi-spin terms })
$$

No sign problem on bipartite lattices

Path integrals in quantum statistical mechanics

We want to compute a thermal expectation value

$$
\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left\{A \mathrm{e}^{-\beta H}\right\}
$$

where $\beta=1 / T$ (and possibly $T \rightarrow 0$). How to deal with the exponential operator?
"Time slicing" of the partition function

$$
Z=\operatorname{Tr}\left\{\mathrm{e}^{-\beta H}\right\}=\operatorname{Tr}\left\{\prod_{l=1}^{L} \mathrm{e}^{-\Delta_{\tau} H}\right\} \quad \Delta_{\tau}=\beta / L
$$

Choose a basis and insert complete sets of states;

$$
Z=\sum_{\alpha_{0}} \sum_{\alpha_{1}} \cdots \sum_{\alpha_{L}-1}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle
$$

Use approximation for imaginary time evolution operator. Simplest way

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

Leads to error $\propto \Delta_{\tau}$. Limit $\Delta_{\tau} \rightarrow 0$ can be taken

Example: hard-core bosons

$$
H=K=-\sum_{\langle i, j\rangle} K_{i j}=-\sum_{\langle i, j\rangle}\left(a_{j}^{\dagger} a_{i}+a_{i}^{\dagger} a_{j}\right) \quad n_{i}=a_{i}^{\dagger} a_{i} \in\{0,1\}
$$

Equivalent to $\mathrm{S}=1 / 2 \mathrm{XY}$ model

$$
H=-2 \sum_{\langle i, j\rangle}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)=-\sum_{\langle i, j\rangle}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right), \quad S^{z}= \pm \frac{1}{2} \sim n_{i}=0,1
$$

"World line" representation of

$$
Z \approx \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| 1-\Delta_{\tau} H\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| 1-\Delta_{\tau} H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| 1-\Delta_{\tau} H\left|\alpha_{0}\right\rangle
$$

$$
Z=\sum_{\{\alpha\}}
$$

world line moves for Monte Carlo sampling

$\mathrm{n}_{\mathrm{K}}=$ number of "jumps"

Expectation values

$$
\begin{aligned}
\langle A\rangle & =\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} A\left|\alpha_{0}\right\rangle \\
Z & =\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle
\end{aligned}
$$

We want to write this in a form suitable for MC importance sampling

$$
\begin{aligned}
&\langle A\rangle=\frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})} \longrightarrow\langle A\rangle=\langle A(\{\alpha\})\rangle_{W} \\
& W(\{\alpha\})=\text { weight } \\
& A(\{\alpha\})=\text { estimator }
\end{aligned}
$$

For any quantity diagonal in the occupation numbers (spin z):

$$
A(\{\alpha\})=A\left(\alpha_{n}\right) \text { or } A(\{\alpha\})=\frac{1}{L} \sum_{l=0}^{L-1} A\left(\alpha_{l}\right)
$$

Measure quantities on all slices and average

- in practice full averaging may take too long and OK to do partial averages

Off-diagonal expectation values

$$
\langle A\rangle=\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{2}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} A\left|\alpha_{0}\right\rangle
$$

In general the states a_{1}, \ldots, a_{n} contributing to Z will not contribute to $<A>$

- more complicated measurements

Special case: term K_{ij} in the kinetic energy

Multiply and divide by the weight

$$
\begin{aligned}
&\langle A\rangle=\frac{1}{Z} \sum_{\{\alpha\}}\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle \frac{\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle} \\
&=\frac{1}{Z} \sum_{\{\alpha\}} W(\{\alpha\}) \frac{\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H} K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{0}\right| \mathrm{e}^{-\Delta_{\tau}}\left|\alpha_{L-1}\right\rangle \cdots\left\langle\alpha_{1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{0}\right\rangle} \\
& \mathrm{e}^{-\Delta_{\tau} K} K_{i j} \approx K_{i j} \quad K_{i j}(\{\alpha\})=\frac{\left\langle\alpha_{1}\right| K_{i j}\left|\alpha_{0}\right\rangle}{\left\langle\alpha_{1}\right| 1-\Delta_{\tau} K\left|\alpha_{0}\right\rangle} \in\left\{0, \frac{1}{\Delta_{\tau}}\right\}
\end{aligned}
$$

Average over all slices \rightarrow count number of kinetic jumps

$$
\left\langle K_{i j}\right\rangle=\frac{\left\langle n_{i j}\right\rangle}{\beta}, \quad\langle K\rangle=-\frac{\left\langle n_{K}\right\rangle}{\beta} \quad\langle K\rangle \propto N \rightarrow\left\langle n_{K}\right\rangle \propto \beta N
$$

There should be of the order $\beta \mathrm{N}$ "jumps" of the worldlines

Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

$$
\mathrm{e}^{-\Delta_{\tau} H}=\mathrm{e}^{-\Delta_{\tau} K} \mathrm{e}^{-\Delta_{\tau} V}+\mathcal{O}\left(\Delta_{\tau}^{2}\right) \rightarrow\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} H}\left|\alpha_{l}\right\rangle \approx \mathrm{e}^{-\Delta_{\tau} V_{l}}\left\langle\alpha_{l+1}\right| \mathrm{e}^{-\Delta_{\tau} K}\left|\alpha_{l}\right\rangle
$$

Product over all times slices \rightarrow

$$
\left.W(\{\alpha\})=\Delta_{\tau}^{n_{K}} \exp \left(-\Delta_{\tau} \sum_{l=0}^{L-1} V_{l}\right)\right\} P_{\mathrm{acc}}=\min \left[\Delta_{\tau}^{2} \exp \left(-\frac{V_{\text {new }}}{V_{\text {old }}}\right), 1\right]
$$

The continuous time limit

Limit $\Delta_{T} \rightarrow 0$: number of kinetic jumps remains finite, store events only

Special methods (loop and worm updates) developed for efficient sampling of the paths in the continuum
(a)

(b)

local updates (problem when $\Delta_{T} \rightarrow 0$?)

- consider probability of inserting/removing events within a time window
\Leftarrow Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard \& Wiese (1996)

Stochastic series expansion (SSE)

Alternative to path integral: Series expansion representation

Start from the Taylor expansion $\mathrm{e}^{-\beta H}=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} H^{n}$
(approximation-free method from the outset)

$$
Z=\sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n}}\left\langle\alpha_{0}\right| H\left|\alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle
$$

Similar to the path integral; $1-\Delta \tau H \rightarrow H$ and weight factor outside
For hard-core bosons the (allowed) path weight is $W\left(\{\alpha\}_{n}\right)=\beta^{n} / n$!
For any model, the energy is

$$
\begin{aligned}
E & =\frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^{n}}{n!} \sum_{\{\alpha\}_{n+1}}\left\langle\alpha_{0}\right| H\left|\alpha_{n}\right\rangle \cdots\left\langle\alpha_{2}\right| H\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right| H\left|\alpha_{0}\right\rangle \\
& \text { one more "slice" to sum over here }
\end{aligned}
$$

$$
C=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}-\langle n\rangle
$$

From this follows: narrow \mathbf{n}-distribution with $\langle n\rangle \propto N \beta, \sigma_{n} \propto \sqrt{N \beta}$

Fixed-length scheme

- n fluctuating \rightarrow varying size of the configurations
- the expansion can be truncated at some $\mathrm{n}_{\max }=\mathrm{M}$ (exponentially small error)
- cutt-off at $\mathrm{n}=\mathrm{M}$, fill in operator string with unit operators $\mathrm{H}_{0}=\mathrm{I}$

$$
\begin{aligned}
& \mathrm{n}=10 \quad \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\mathrm{H}_{4} & \mathrm{H}_{7} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{H}_{5} \\
\hline
\end{array} \\
& \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\mathrm{M}=14 & \mathrm{H}_{4} & \mathrm{I} & \mathrm{H}_{7} & \mathrm{I} & \mathrm{H}_{1} & \mathrm{H}_{6} & \mathrm{I} & \mathrm{H}_{2} & \mathrm{H}_{1} & \mathrm{H}_{8} & \mathrm{H}_{3} & \mathrm{H}_{3} & \mathrm{I} & \mathrm{H}_{5} \\
\hline
\end{array}
\end{aligned}
$$

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

$$
\binom{M}{n}^{-1}=\frac{n!(M-n)!}{M!}
$$

Here n is the number of $\mathrm{H}_{\mathrm{i}}, \mathrm{i}>0$ instances in the sequence of M operators

$$
Z=\sum_{\{\alpha\}_{M}} \sum_{\left\{H_{i}\right\}} \frac{(-\beta)^{n}(M-n)!}{M!}\left\langle\alpha_{0}\right| H_{i(M)}\left|\alpha_{M-1}\right\rangle \cdots\left\langle\alpha_{1}\right| H_{i(1)}\left|\alpha_{0}\right\rangle
$$

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$
H=J \sum_{b=1}^{N_{b}} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},
$$

Diagonal (1) and off-diagonal (2) bond operators

$$
\begin{aligned}
& H_{1, b}=\frac{1}{4}-S_{i(b)}^{z} S_{j(b)}^{z}, \\
& H_{2, b}=\frac{1}{2}\left(S_{i(b)}^{+} S_{j(b)}^{-}+S_{i(b)}^{-} S_{j(b)}^{+}\right) . \\
& H=-J \sum_{b=1}^{N_{b}}\left(H_{1, b}-H_{2, b}\right)+\frac{J N_{b}}{4}
\end{aligned}
$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$
\begin{array}{ll}
\left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{1, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{2, b}\left|\uparrow_{i(b)} \downarrow_{j(b)}\right\rangle=\frac{1}{2} \\
\left\langle\downarrow_{i(b)} \uparrow_{j(b)}\right| H_{1, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2} & \left\langle\uparrow_{i(b)} \downarrow_{j(b)}\right| H_{2, b}\left|\downarrow_{i(b)} \uparrow_{j(b)}\right\rangle=\frac{1}{2}
\end{array}
$$

Partition function

$$
Z=\sum_{\alpha} \sum_{n=0}^{\infty}(-1)^{n_{2}} \frac{\beta^{n}}{n!} \sum_{S_{n}}\langle\alpha| \prod_{p=0}^{n-1} H_{a(p), b(p)}|\alpha\rangle
$$

$\mathrm{n}_{2}=$ number of $\mathrm{a}(\mathrm{i})=2$ (off-diagonal operators) in the sequence

Index sequence: $S_{n}=[a(0), b(0)],[a(1), b(1)], \ldots,[a(n-1), b(n-1)]$

For fixed-length scheme (string length $=L$ now)

$$
Z=\sum_{\alpha} \sum_{S_{L}}(-1)^{n_{2}} \frac{\beta^{n}(L-n)!}{L!}\langle\alpha| \prod_{p=0}^{L-1} H_{a(p), b(p)}|\alpha\rangle \quad W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

Propagated states: $|\alpha(p)\rangle \propto \prod_{i=0}^{p-1} H_{a(i), b(i)}|\alpha\rangle$

W >0 (n_{2} even) for bipartite lattice Frustration leads to sign problem

| -1 | +1 | -1 | -1 | + | -1 | +1 | +1 | | | $a(p)$ | $b(p)$ | $s(p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | p | 11 | 1 | 2 | 4 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 2 | 4 | 9 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 2 | 6 | 13 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 3 | 6 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 2 | 4 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 6 | 13 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 4 | 9 | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 14 | |

In a program:
$s(p)=$ operator-index string

- $s(p)=2 * b(p)+a(p)-1$
- diagonal; $s(p)=$ even
- off-diagonal; $s(p)=$ off
$\sigma(i)=$ spin state, $i=1, \ldots, N$
- only one has to be stored

SSE effectively provides a discrete representation of the time continuum

- computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

$X()=$ vertex list

- operator at $\mathrm{p} \rightarrow \mathrm{X}(\mathrm{v})$ $v=4 p+1, l=0,1,2,3$
- links to next and previous leg

Spin states between operations are redundant; represented by links

- network of linked vertices will be used for loop updates of vertices/operators

Monte Carlo sampling scheme

Change the configuration; $\left(\alpha, S_{L}\right) \rightarrow\left(\alpha^{\prime}, S_{L}^{\prime}\right)$

$$
W\left(\alpha, S_{L}\right)=\left(\frac{\beta}{2}\right)^{n} \frac{(L-n)!}{L!}
$$

$$
P_{\text {accept }}=\min \left[\frac{W\left(\alpha^{\prime}, S_{L}\right)}{W\left(\alpha, S_{L}\right)} \frac{P_{\text {select }}\left(\alpha^{\prime}, S_{L}^{\prime} \rightarrow \alpha, S_{L}\right)}{P_{\text {select }}\left(\alpha, S_{L} \rightarrow \alpha^{\prime}, S_{L}^{\prime}\right)}, 1\right]
$$

Diagonal update: $[0,0]_{p} \leftrightarrow[1, b]_{p}$

Attempt at $p=0, \ldots, L-1$. Need to know $\mid a(p)>$

- generate by flipping spins when off-diagonal operator

$$
\begin{aligned}
& P_{\text {select }}(a=0 \rightarrow a=1)=1 / N_{b}, \quad\left(b \in\left\{1, \ldots, N_{b}\right\}\right) \\
& P_{\text {select }}(a=1 \rightarrow a=0)=1
\end{aligned}
$$

n is the current power

$$
\frac{W(a=1)}{W(a=0)}=\frac{\beta / 2}{L-n} \quad \frac{W(a=0)}{W(a=1)}=\frac{L-n+1}{\beta / 2}
$$

$$
\text { - } n \rightarrow n+1(a=0 \rightarrow a=1)
$$

$$
\text { - } \mathrm{n} \rightarrow \mathrm{n}-1 \quad(\mathrm{a}=1 \rightarrow \mathrm{a}=0)
$$

Acceptance probabilities

$$
\begin{aligned}
& P_{\text {accept }}([0,0] \rightarrow[1, b])=\min \left[\frac{\beta N_{b}}{2(L-n)}, 1\right] \\
& P_{\text {accept }}([1, b] \rightarrow[0,0])=\min \left[\frac{2(L-n+1)}{\beta N_{b}}, 1\right]
\end{aligned}
$$

Off-diagonal updates

(b)

Local update
Change the type of two operators

- constraints
- inefficient
- cannot change winding numbers

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n - increase L if n is close to current L

- e.g., L=n+n/3

Example

- 16×16 system, $\beta=16 \Rightarrow$
- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work?

Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow \chi$

- SSE results from 10^{10} sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

\Leftarrow Energy for long 1D chains
- SSE results for 10^{6} sweeps
- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit ($\mathrm{T} \rightarrow 0$)

Valence bonds and Ground State Projection

The valence bond basis for $S=1 / 2$ spins

Valence-bonds between sublattice A, B sites $(i, j)=\left(\left|\uparrow_{i} \downarrow_{j}\right\rangle-\left|\downarrow_{i} \uparrow_{j}\right\rangle\right) / \sqrt{2}$
Basis states; singlet products

$$
\left|V_{r}\right\rangle=\prod_{b=1}^{N / 2}\left(i_{r b}, j_{r b}\right), \quad r=1, \ldots(N / 2)!
$$

The valence bond basis is overcomplete and non-orthogonal - expansion of arbitrary singlet state is not unique

$$
|\Psi\rangle=\sum_{r} f_{r}\left|V_{r}\right\rangle \quad \text { (all } \mathrm{f}_{r} \text { positive for non-frustrated system) }
$$

All valence bond states overlap with each other

$$
\left\langle V_{l} \mid V_{r}\right\rangle=2^{N_{\circ}-N / 2} \quad N_{\circ}=\text { number of loops in overlap graph }
$$

Spin correlations from loop structure

$$
\frac{\left\langle V_{l}\right| \vec{S}_{i} \cdot \vec{S}_{j}\left|V_{r}\right\rangle}{\left\langle V_{l} \mid V_{r}\right\rangle}=\left\{\begin{array}{l}
\frac{3}{4}(-1)^{x_{i}-x_{j}+y_{i}-y_{j}} \quad \text { (i,j in same loop) } \\
0 \quad \text { (i,j in different loops) }
\end{array}\right.
$$

More complicated matrix elements (e.g., dimer correlations) are also related to the loop structure

$\left|V_{i}\right\rangle$

$\left|V_{r}\right\rangle$

$\left\langle V_{l} \mid V_{r}\right\rangle$

Projector Monte Carlo in the valence-bond basis

Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)
$(-H)^{\mathrm{n}}$ projects out the ground state from an arbitrary state

$$
(-H)^{n}|\Psi\rangle=(-H)^{n} \sum_{i} c_{i}|i\rangle \rightarrow c_{0}\left(-E_{0}\right)^{n}|0\rangle
$$

S=1/2 Heisenberg model

$$
H=\sum_{\langle i, j\rangle} \vec{S}_{i} \cdot \vec{S}_{j}=-\sum_{\langle i, j\rangle} H_{i j}, \quad H_{i j}=\left(\frac{1}{4}-\vec{S}_{i} \cdot \vec{S}_{j}\right)
$$

Project with string of bond operators

$$
\sum_{\left\{H_{i j}\right\}} \prod_{p=1}^{n} H_{i(p) j(p)}|\Psi\rangle \rightarrow r|0\rangle \quad(r=\text { irrelevant })
$$

Action of bond operators

$$
\begin{aligned}
H_{a b}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =|\ldots(a, b) \ldots(c, d) \ldots\rangle \\
H_{b c}|\ldots(a, b) \ldots(c, d) \ldots\rangle & =\frac{1}{2}|\ldots(c, b) \ldots(a, d) \ldots\rangle
\end{aligned}
$$

Simple reconfiguration of bonds (or no change; diagonal)

- no minus signs for $A \rightarrow B$ bond 'direction' convetion
- sign problem does appear for frustrated systems

Expectation values: $\langle A\rangle=\langle 0| A|0\rangle$

Strings of singlet projectors

$$
P_{k}=\prod_{p=1}^{n} H_{i_{k}(p) j_{k}(p)}, \quad k=1, \ldots, N_{b}^{n} \quad\left(N_{b}=\text { number of interaction bonds }\right)
$$

We have to project bra and ket states

$$
\begin{aligned}
\sum_{k} P_{k}\left|V_{r}\right\rangle & =\sum_{k} W_{k r}\left|V_{r}(k)\right\rangle \rightarrow\left(-E_{0}\right)^{n} c_{0}|0\rangle \\
\sum_{g}\left\langle V_{l}\right| P_{g}^{*} & =\sum_{g}\left\langle V_{l}(g)\right| W_{g l} \rightarrow\langle 0| c_{0}\left(-E_{0}\right)^{n}
\end{aligned}
$$

6-spin chain example:

$$
\begin{aligned}
&\langle A\rangle= \frac{\sum_{g, k}\left\langle V_{l}\right| P_{g}^{*} A P_{k}\left|V_{r}\right\rangle}{\sum_{g, k}\left\langle V_{l}\right| P_{g}^{*} P_{k}\left|V_{r}\right\rangle} \\
&=\frac{\sum_{g, k} W_{g l} W_{k r}\left\langle V_{l}(g)\right| A\left|V_{r}(k)\right\rangle}{\sum_{g, k} W_{g l} W_{k r}\left\langle V_{l}(g) \mid V_{r}(k)\right\rangle} \\
&- \text { Monte Carlo sampling } \\
& \text { of operator strings } \\
&- \text { Estimators based on } \\
& \quad \text { transition graphs }
\end{aligned}
$$

More efficient ground state QMC algorithm \rightarrow larger lattices
Loop updates in the valence-bond basis
AWS and H. G. Evertz, PRB 2010
Put the spins back in a way compatible with the valence bonds

$$
\left(a_{i}, b_{i}\right)=\left(\uparrow_{i} \downarrow_{j}-\downarrow_{i} \uparrow_{j}\right) / \sqrt{2}
$$

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods (world-line and stochastic series expansion methods)

- good valence-bond trial wave functions can be used
- larger systems accessible
- sample spins, but measure using the valence bonds

T>0 and $\mathrm{T}=0$ algorithms side-by-side

Finite-temperature QMC (world lines, SSE,...)

periodic time boundary conditions

Ground state projection
$\sum_{\alpha \beta} f_{\beta} f_{\alpha}\langle\beta|(-H)^{m}|\alpha\rangle$

open boundaries capped by valence bonds (2-spin singlets) [AWS, HG Evertz, 2010]
Trial state can conserve relevant ground state quantum numbers ($\mathrm{S}=0, \mathrm{k}=0, \ldots$)

- Computer implementations similar

Starting point: S=1/2 antiferromagnetic Heisenberg model

$$
\mathbf{H}=\mathbf{J} \sum_{\langle\mathbf{i}, \mathbf{j}\rangle} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}
$$

Sublattice magnetization

$\vec{m}_{s}=\frac{1}{N} \sum_{i=1}^{N} \phi_{i} \vec{S}_{i}, \quad \phi_{i}=(-1)^{x_{i}+y_{i}}$
(2D square lattice)
Long-range order: $\left\langle\mathrm{ms}^{2} \gg 0\right.$ for $\mathrm{N} \rightarrow \infty$

Quantum Monte Carlo

- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger \& Young 1988
$m_{s}=0.30(2)$
$\approx 60 \%$ of classical value
AWS \& HG Evertz 2010
$m_{s}=0.30743(1)$

