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Outline

QMC study of deconfined criticality 
- emergent U(1), RG flows

- critical exponents

- VBS domain walls

- critical scaling with two divergent lengths

- phenomenological explanation of scaling anomalies

Revision of conventional quantum-critical scaling forms

Deconfined quantum criticality 
- Néel to VBS quantum phase transition (field theory)

- Concept of “Dangerously irrelevant” perturbations

- Valence-bond solids (VBS) and models hosting them

      - J-Q model (no QMC sign problem)

Introduction to finite-size scaling 
- 2D Ising model



Field theory description; brief summary

Standard low-energy theory of quantum antiferromagnet
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Can describe Neel to featureless paramagnetic transition

- VBS pattern or topological order cannot be captured by 𝝋

Topological defects (hedgehogs) in field configurations:

- suppressed in the Neel state

- proliferate in the quantum paramagnet

Hedgehogs in the O(3) non-linear Sigma model

Define a unit length Neel vector:                                                   with  

Consider space-time configurations of 

In the Neel state these will be slowly varying,

described by a “non-linear sigma model” 

Lagrangian:

g0
gcNeel AFM Paramagnet 

In the Neel state: Hedgehogs are energetically costly, 

                                                                    so absent.

In the Paramagnet Hedgehogs proliferate

Question:  Hedgehogs at the QPT?? 

Hedgehog:  Singular configuration of

at one space-time point (smooth elsewhere) ⌧

Graph:Senthil et al.

The VBS state corresponds to a certain

condensation of topological defects 
- requires a description beyond 𝝋4 theory

Murthy & Sachdev 1991, Read & Sachdev 1991

Neel vector described by spinors z; 

- coupled to U(1) gauge field where hedgehogs correspond to monopoles

- VBS on square lattice arises from condensation of quadrupled monopoles

� = z⇤↵�↵�z�

Nature of the Neel - VBS transition remained unknown… 
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nearest-neighbor coupling J and a four-spin ring exchange term K. Increasing K=J, we find that the
ground state spin stiffness vanishes at a critical point at which a spin gap opens and a striped bond-
plaquette order emerges. At still higher K=J, this phase becomes unstable and the system develops a
staggered magnetization. We discuss the quantum phase transitions between these phases.
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Ring exchange interactions have for a long time been
known to be present in a variety of quantum many-body
systems [1] and have been investigated rather thoroughly
in solid 3He [2]. They are also important for electrons in
the Wigner crystal phase [3,4]. In strongly correlated
electron systems, such as the high-Tc cuprates and related
antiferromagnets, ring exchange processes are typically
much weaker than the pair exchange J [5] and are often
neglected. Four-spin ring exchange has, however, been
argued to be responsible for distinct features in the mag-
netic Raman [6] and optical absorption spectra [7]. Neu-
tron measurements of the magnon dispersion have also
become sufficiently accurate to detect deviations from the
standard pair exchange Hamiltonian (the Heisenberg
model) and such discrepancies have been attributed to
ring exchange [8,9]. Recently, ring exchange has attracted
interest as a potentially important interaction that could
lead to novel quantum states of matter, in particular, 2D
electronic spin liquids with fractionalized excitations
[10–15]. Furthermore, for bosons on a square lattice
ring exchange has been shown to give rise to an ‘‘exciton
Bose liquid’’ phase [16].

Here we study the effects of ring exchange in one of the
most basic quantum many-body Hamiltonians—the
spin-1=2 XY model on a 2D square lattice. We use a
quantum Monte Carlo method (stochastic series expan-
sion, hereafter SSE [17–19]) to study the low-temperature
behavior of this system including a four-spin ring term.
Defining bond and plaquette exchange operators

Bij ! S"i S
#
j " S#i S

"
j ! 2$Sxi Sxj " Syi S

y
j%; (1)

Pijkl ! S"i S
#
j S

"
k S

#
l " S#i S

"
j S

#
k S

"
l ; (2)

the Hamiltonian is

H ! #J
X
hiji

Bij # K
X
hijkli

Pijkl; (3)

where hiji denotes a pair of nearest-neighbor sites and
hijkli are sites on the corners of a plaquette. For K ! 0

this is the standard quantum XY model, or, equivalently,
hard-core bosons at half-filling with no interactions apart
from the single-occupancy constraint. This system under-
goes a Kosterlitz-Thouless transition at T=J & 0:68
[20,21] and has a T ! 0 ferromagnetic moment Mx !
hSxi i & 0:44 [22,23]. The K term corresponds to retaining
only the purely x and y terms of the full cyclic exchange.

In a soft-core version of the pure ring model (J ! 0),
Paramekanti et al. recently found a compressible but non-
superfluid phase (exciton Bose liquid) for weak on-site
repulsion U [16]. As the hard-core limit is approached
they found a transition to a staggered charge-density-
wave phase. Hence, the ground state of the spin
Hamiltonian (3) can be expected to change from an
easy-plane ferromagnet with a finite spin stiffness !s
and a magnetization hMxi at low K=J to an Isinglike
antiferromagnet with vanishing !s and a staggered mag-
netization hMSi ! $#1%xi"yihSzi i at large K=J. The central
result of our simulations is that the competing J and K
interactions give rise to yet a third phase at K=J ' 10; a
striped bond-plaquette phase where the expectation val-
ues hBiji and hPijkli alternate in strength with a period of
two lattice spacings in one of the lattice directions. An
example of this order is illustrated in Fig. 1. A similar
columnar ‘‘bond charge’’ phase was recently predicted
based on a lattice field theory including a plaquette term
[13]. The field theory also has fractionalized phases, of
which we have found no evidence. Hence, the microscopic
mechanisms leading to fractionalized spin liquids remain
to be clarified.

The SSE simulation method [17–19] that we use here
has previously been applied to a variety of spin and boson
models with two-particle interactions, including the
Hamiltonian (3) with K ! 0 (the XY model) [23]. The
generalization to include the four-spin K term is relatively
straightforward, although nontrivial new procedures had
to be developed for large-K=J simulations [24]. Bond and
plaquette strengths such as those shown in Fig. 1 were
obtained using open-boundary rectangular Lx ( Ly
lattices with Ly ! 2Lx. The translational and rotational
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1Department of Physics, Åbo Akademi University, Porthansgatan 3, FIN-20500 Turku, Finland
2Department of Physics, University of California, Santa Barbara, California 93106

3Institute of Theoretical Physics, University of California, Santa Barbara, California 93106
4Department of Physics, University of California, Davis, California 95616

(Received 13 May 2002; published 21 November 2002)

We present quantum Monte Carlo results for a square-lattice S ! 1=2 XY model with a standard
nearest-neighbor coupling J and a four-spin ring exchange term K. Increasing K=J, we find that the
ground state spin stiffness vanishes at a critical point at which a spin gap opens and a striped bond-
plaquette order emerges. At still higher K=J, this phase becomes unstable and the system develops a
staggered magnetization. We discuss the quantum phase transitions between these phases.

DOI: 10.1103/PhysRevLett.89.247201 PACS numbers: 75.10.–b, 05.30.–d, 75.40.Mg

Ring exchange interactions have for a long time been
known to be present in a variety of quantum many-body
systems [1] and have been investigated rather thoroughly
in solid 3He [2]. They are also important for electrons in
the Wigner crystal phase [3,4]. In strongly correlated
electron systems, such as the high-Tc cuprates and related
antiferromagnets, ring exchange processes are typically
much weaker than the pair exchange J [5] and are often
neglected. Four-spin ring exchange has, however, been
argued to be responsible for distinct features in the mag-
netic Raman [6] and optical absorption spectra [7]. Neu-
tron measurements of the magnon dispersion have also
become sufficiently accurate to detect deviations from the
standard pair exchange Hamiltonian (the Heisenberg
model) and such discrepancies have been attributed to
ring exchange [8,9]. Recently, ring exchange has attracted
interest as a potentially important interaction that could
lead to novel quantum states of matter, in particular, 2D
electronic spin liquids with fractionalized excitations
[10–15]. Furthermore, for bosons on a square lattice
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Paramekanti et al. recently found a compressible but non-
superfluid phase (exciton Bose liquid) for weak on-site
repulsion U [16]. As the hard-core limit is approached
they found a transition to a staggered charge-density-
wave phase. Hence, the ground state of the spin
Hamiltonian (3) can be expected to change from an
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result of our simulations is that the competing J and K
interactions give rise to yet a third phase at K=J ' 10; a
striped bond-plaquette phase where the expectation val-
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two lattice spacings in one of the lattice directions. An
example of this order is illustrated in Fig. 1. A similar
columnar ‘‘bond charge’’ phase was recently predicted
based on a lattice field theory including a plaquette term
[13]. The field theory also has fractionalized phases, of
which we have found no evidence. Hence, the microscopic
mechanisms leading to fractionalized spin liquids remain
to be clarified.

The SSE simulation method [17–19] that we use here
has previously been applied to a variety of spin and boson
models with two-particle interactions, including the
Hamiltonian (3) with K ! 0 (the XY model) [23]. The
generalization to include the four-spin K term is relatively
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QMC study of 2D S=1/2 XY model 
with plaquette flip (partial ring exchange)

First-order transition would be

expected for superfluid (XY magnet)

to VBS transition

symmetries are then broken and a unique static bond-
plaquette strength pattern can be observed when K=J!
10 at T=J & 0:5. For K=J & 8 no order is visible at the
centers of large lattices at any temperature. The modu-
lations seen within the stripes in Fig. 1 are strongest at the
four corners of the lattice and decrease as the center is
approached. They also decrease as the lattice size is
increased and in the thermodynamic the striped state
should therefore be analogous to the fourfold degenerate
columnar spin-Peierls state of Ref. [13].

Our conclusion that the stripes are stable is based on
finite-size scaling of correlation functions on periodic
L" L lattices. The striped phase can be detected using
the bond or plaquette correlations. Here we consider the
plaquette structure factor

P#qx; qy$ %
1

L2

X
a;b

ei#ra&rb$'qhPa1a2a3a4Pb1b2b3b4i; (4)

where a1; . . . ; a4 are the sites belonging to plaquette a.We
have studied the full q dependence and only found peaks
at #0;!$ and #!; 0$. Hence, the modulations within the
stripes seen in Fig. 1 are indeed induced by open bounda-
ries. The spin structure factor is defined as

S#qx; qy$ %
1

L2

X
j;k

ei#rj&rk$'qhSzjSzki; (5)

where ri % #xi; yi$ is the lattice coordinate. We will ana-
lyze the staggered and striped order parameters per site,
defined as

hM2
Si % S#!;!$=L2; (6)

hM2
Pi % P#!; 0$=L2: (7)

The spin stiffness (the superfluid density in the boson
representation) is defined by

"s %
@2E##$
@#2 ; (8)

where E##$ % hH##$i=L2 and the twist # is imposed in
the x or y direction so that the corresponding bond
operators (1) become Bij##$ % cos##$#Sxi Sxj ( Syi S

y
j$ (

sin##$#Sxi Syj & Syi S
x
j$. The derivative at # % 0 in Eq. (8)

can be directly estimated using the winding number
fluctuations in the SSE simulations [25].

Figure 2 shows the spin stiffness and the stripe order
parameter on an L % 64 lattice at T % J=8 (where the
results are almost converged to their ground state values).
The stiffness becomes very small at K=J ) 8, where the
stripe order increases significantly. Finite-size scaling
shows that the stripe order survives in the thermodynamic
limit. Results for K=J % 8:5 and temperatures sufficiently
low to give the ground state are shown in Fig. 3. For
L * 32 the data graphed versus 1=L fall on a straight
line, which extrapolates to a nonzero value as L ! 1.
Based on results [16] for the soft-core version of the
J % 0 model (or K ! 1) the staggered magnetization
can be expected to be nonzero for large K. However, as
also shown in Fig. 3, at K=J % 8:5 hM2

Si decreases as 1=L2

for large lattices, implying that the spin-spin correlations
are short ranged [S#!;!$ is finite]. Figure 3 also shows
results for K=J % 64, where the scaling behaviors of the
two quantities is reversed—hM2

Pi decays as 1=L2 whereas
hM2

Si extrapolates to a nonzero value. Note that the size
dependence of M2

S is nonmonotonic, with a minimum
around L ) 10. Such nonmonotonicity has previously
been observed for a spatially anisotropic spin model
[26] where it was attributed to the presence of two differ-
ent low-energy scales in the system. The nonmonotonicity
seen at K=J % 64 in Fig. 3 indicates that the stripe corre-
lations remain strong with a correlation length !10 lat-
tice spacings. The location of the minimum in hM2

Si
moves to lower 1=L as K=J is decreased, indicating
growing stripe correlations. The strong stripe correlations
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FIG. 2. Spin stiffness and plaquette-stripe order parameter vs
ring-exchange coupling for a 64" 64 system with periodic
boundary conditions at T % J=8.

FIG. 1. Plaquette (left) and bond (right) strengths at the
center of a 64" 128 open-boundary lattice at K=J % 10 and
T % J=8. The plaquette strengths are represented by shades of
gray with the weakest hPijkli % 0:222 (white squares) and
strongest 0:468 (black squares). The bond strengths are indi-
cated by the width of the line segments, with the weakest
hBiji % 0:181 and the strongest 0:505.
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No discontinuities detected

Motivated re-examination of the field theory
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Deconfined quantum criticality

Hedgehogs in the O(3) non-linear Sigma model

Define a unit length Neel vector:                                                   with  

Consider space-time configurations of 

In the Neel state these will be slowly varying,

described by a “non-linear sigma model” 

Lagrangian:

g0
gcNeel AFM Paramagnet 

In the Neel state: Hedgehogs are energetically costly, 

                                                                    so absent.

In the Paramagnet Hedgehogs proliferate

Question:  Hedgehogs at the QPT?? 

Hedgehog:  Singular configuration of

at one space-time point (smooth elsewhere) ⌧

Graph:Senthil et al.

Motrunich and Vishwanath 2004 (+ earlier work in particle physics)

O(3) transition with suppressed topological defects in MC simulations

- changes universality class 

Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

Topological defects may be “dangerously irrelevant” at

the 2D Neel - VBS transition

- universality of defect suppressed O(3)

- topological defects relevant in VBS state only
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Here, v is a spin-wave velocity, and s,u are parameters whose values
are adjusted to obtain Néel order in the ground state. In mean-field
theory, this happens for s < 0, where we have |h8i| = (�s)/(2u)
by minimization of the action S8. A standard computation of
the fluctuations about this saddle point shows that the low-energy
excitations are spin waves with two possible polarizations and an
energy ✏ that vanishes at small wavevectors k, ✏ = vk. These spin
waves correspond to local oscillations of 8 about an orientation
chosen by spontaneous breaking of the spin-rotation symmetry
in the Néel state, but which maintain low energy by fixing the
magnitude |8|. The spin waves also interact weakly with each other,
and the form of these interactions can also be described by S8.
All eVects of these interactions are completely captured by a single
energy scale, ⇢s, which is the ‘spin stiVness’, measuring the energy
required to slowly twist the orientation of the Néel order across a
large spatial region. At finite temperatures, the thermal fluctuations
of the interacting spin waves can have strong consequences. We
will not describe these here (because they are purely consequences
of classical thermal fluctuations), apart from noting4 that all these
thermal eVects can be expressed universally as functions of the
dimensionless ratio kBT/⇢s.

For future analysis, it is useful to have an alternative description
of the low-energy states above the Néel ordered state. For the
Néel state, this alternative description is, in a sense, a purely
mathematical exercise: it does not alter any of the low-energy
physical properties, and yields an identical low-temperature theory
for all observables when expressed in terms of kBT/⇢s. The key step
is to express the vector field 8 in terms of an S = 1/2 complex
spinor field z↵, where ↵ ="# by

8 = z⇤
↵� ↵�z� (3)

where � are the 2⇥2 Pauli matrices. Note that this mapping from
8 to z↵ is redundant. We can make a space-time-dependent change
in the phase of z↵ by the field ✓(x,⌧)

z↵ ! ei✓z↵ (4)

and leave 8 unchanged. All physical properties must therefore
also be invariant under equation (4), and so the quantum field
theory for z↵ has a U(1) gauge invariance, much like that found
in quantum electrodynamics. The eVective action for z↵ therefore
requires the introduction of an ‘emergent’ U(1) gauge field Aµ

(where µ = x,⌧ is a three-component space-time index). The field
Aµ is unrelated to the electromagnetic field, but is an internal
field that conveniently describes the couplings between the spin
excitations of the antiferromagnet. As we have noted above, in the
Néel state, expressing the spin-wave fluctuations in terms of z↵

and Aµ is a matter of choice, and the above theory for the vector
field 8 can serve us equally well. The distinction between the two
approaches appears when we move out of the Néel state across
quantum critical points into other phases (as we will see later):
in some of these phases, the emergent Aµ gauge field is no longer
optional, but an essential characterization of the ‘quantum order’ of
the phase. As we did for S8, we can write the quantum field theory
for z↵ and Aµ by the constraints of symmetry and gauge invariance,
which now yields

Sz =
Z

d2rd⌧


|(@µ � iAµ)z↵|2 + s|z↵|2 +u(|z↵|2)2

+ 1

2e2
0

(✏µ⌫l@⌫Al)
2

�
. (5)

For brevity, we have now used a ‘relativistically’ invariant notation,
and scaled away the spin-wave velocity v; the values of the couplings

s,u are diVerent from, but related to, those in S8. The Maxwell
action for Aµ is generated from short-distance z↵ fluctuations,
and it makes Aµ a dynamical field; its coupling e0 is unrelated
to the electron charge. The action Sz is a valid description of
the Néel state for s < 0 (the critical upper value of s will have
fluctuation corrections away from 0), where the gauge theory enters
a Higgs phase with hz↵i 6= 0. This description of the Néel state
as a Higgs phase has an analogy with the Weinberg–Salam theory
of weak interactions—in the latter case, it is hypothesized that
the condensation of a Higgs boson gives a mass to the W and Z
gauge bosons, whereas here the condensation of z↵ quenches the
Aµ gauge boson.
1. Triangular lattice. There have been numerous recent studies5 of
the spin excitations of the insulator Cs2CuCl4. Just as in La2CuO4,
the dominant spin excitations are S = 1/2 spins on the Cu ions,
but now they reside on the vertices of a triangular lattice, as
shown in Fig. 1b. Such an antiferromagnet is well described by
the hamiltonian H0, with a nearest-neighbour exchange J and i
on the sites of the triangular lattice. From numerical studies of
such spin systems6, and also from observations5 in Cs2CuCl4, the
ground state of H0 also has broken spin-rotation symmetry, but the
pattern of spin polarization is now quite diVerent. We now replace
equation (1) by

hSji = N1 cos(K · rj)+N2 sin(K · rj), (6)

where ri is the position of site i, and K = (4⇡/3a)(1,
p

3) for the
ordering pattern in Fig. 1b on a triangular lattice of spacing a. The
most important diVerence from equation (1) is that we now require
two orthogonal vectors N1,2 (N1 ·N2 = 0) to specify the degenerate
manifold of ground states. As for the square lattice, we can write
an eVective action for N1,2 constrained only by the symmetries of
the hamiltonian. Minimization of such an action shows that the
ordered state has N2

1 =N2
2 fixed to a value determined by parameters

in the hamiltonian, but are otherwise arbitrary. Moving on to
the analogue of the spinor representation in equation (3), we now
introduce another spinor w↵, which parameterizes N1,2 by7

N1 + iN2 = "↵� w�� ↵�w�, (7)

where "↵� is the antisymmetric tensor. It can be checked that w↵

transforms as an S = 1/2 spinor under spin rotations, and that
under translations by a lattice vector y w↵ ! e�iK ·y/2w↵. Apart
from these global symmetries, we also have the analogue of the
gauge invariance in equation (4). From the relationship of w↵ to
the physical observables in equation (7), we now find a Z2 gauge
transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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transformation

w↵ ! ⌘w↵, (8)

where ⌘(r, ⌧) = ±1. This Z2 gauge invariance will play an
important role in the discussion in Section IID. The low-energy
theory of the antiferromagnetically ordered state described by
equation (6) can now be obtained from the eVective action for N1,2

or w↵. We will not write it out explicitly here, deferring it also to
Section IID.

B. COUPLED-DIMER ANTIFERROMAGNET

This spin model is shown in Fig. 2. We begin with the square-lattice
antiferromagnet in Fig. 1a, and weaken the bonds indicated by the
dashed lines to the value J/g . For g = 1, this model reduces to the
square-lattice model examined in Section IIA. For g > 1, the model
can be understood as a set of spin dimers, with the intra-dimer
exchange interaction J , and a weaker coupling between the dimers
of J/g . A number of Cu compounds, such as TlCuCl3 (refs 8,9)
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Is the transition really continuous for N=2 (small N)?

• non-compact (defect-free) CP1 model

• large-N calculations for SU(N) CPN-1 theory
Continuous transition found for large N

- violation of Landau rule 

- expected first-order transition between ordered states

= ⟨S⃗i · S⃗j⟩



Detour: Dangerously irrelevant perturbations

Cross-over from XY ordering to Zq ordering at length scale 𝝃’

DQC scenario has two divergent length scales on VBS side
- correlation length                        and emergent U(1) length  
- due to dangerously-irrelevant perturbation which causes VBS
- known in many classical systems (e.g., 3D clock models)

⇠ / (g � gc)
�⌫ ⇠0 / (g � gc)

�⌫0

H = �J
X

hiji

cos(⇥i �⇥j)� h
X

i

cos q⇥i q = 6

Jose, Kadanoff, Kirkpatrick, Nelson, PRB 1977

h is dangerously irrelevant
- does not change critical point
- changes ordered state
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A Scaling Relation for Dangerously Irrelevant Symmetry-Breaking Fields

Tsuyoshi Okubo,∗ Kosei Oshikawa, Hiroshi Watanabe, and Naoki Kawashima
Institute for Solid State Physics, University of Tokyo, Kashiwa 5-1-5, Kashiwa, Japan 277-8581

(Dated: November 10, 2014)

We propose a scaling relation for critical phenomena in which a symmetry-breaking field is denger-
ously irrelevant. We confirm its validity on the 6-state clock model in three and four dimensions by
numerical simulation. In doing so, we point out the problem in the previously-used order parameter,
and present an alternative evidence based on the mass-dependent fluctuation.

PACS numbers: 75.40.Cx, 05.70.Fh, 75.10.Hk, 75.40.Mg

Irrelevant scaling fields are ubiquitous. While they
play minor roles in most cases, some of them are quite
relevant in the usual sense of the word. A text-book ex-
ample is the φ4 term in the φ4 theory above the upper
critical dimension [1]. In the present Letter, we discuss
cases where such a dangerously-irrelevant scaling field re-
duces the symmetry of the system, and demonstrate that
it yields a new scaling relation.
Consider a renormalization-group flow diagram includ-

ing two fixed points; one describing the critical point
and the other the ordered phase. In principle it is possi-
ble that some irrelevant perturbative field at the critical
fixed point contains some scaling field that is relevant
at the one of the two. In particular, when the perturba-
tion is symmetry-reducing, it can happen that both fixed
points lie on the same manifold characterized by zero of
the perturbative field as illustrated in Fig. 1. In such
cases, even if the perturbation almost dies out at some
length scale, say ξ, it may recover its amplitude at larger
length scale, say ξ′. When the system size is between the
two scaling lengths, ξ ≪ L ≪ ξ′, the system may look
ordered but still no effect of the symmetry breaking is
visible. It may then appear that an intermediate phase
exists where the system acquires an emergent symmetry.
A classical example of this type of renormalization group
flow is the q-state clock model in three dimensions [2],
and its continuous-spin counterpart.
In fact, such an intermediate phase really exists in

two dimensions [3]. However, based on the Monte Carlo
simulation results, Miyashita [4] suggested a simpler sce-
nario for the three dimensional case. Furthermore, Os-
hikawa [2] pointed out that the existence of the interme-
diate phase is very unlikely because the low-temperature
phase is already ordered in the pure model in three di-
mensions, and that the whole low-temperature phase is
controlled by the zero-temperature fixed point, in con-
trast to the two-dimensional case. The two-dimensional
quantum SU(N) Heisenberg model may offer a quantum-
mechanical example. While the ground state of this
model is the Neèl state upto N = 4, the valence bond
solid state takes over for N ≥ 5 [5]. When described
in terms of effective spins representing the direction of
the ordered valence bond pattern, the system can be re-
garded as a model analogous to the clock model. It was

FIG. 1. The generic renormarization flow diagram with four
fixed points: P, Q, X, and Y.

discovered that the order parameter distribution function
is almost circular symmetric, indicating the extremely
small effect of the anisotropy. Later, an additional term
was introduced [6–8] to control the quantum fluctuation
and drive the system to the true transition point.
It is now widely accepted that in three dimensions

there is no partially ordered phase with the emergent
symmetry. However, disagreement still persists concern-
ing the scaling relation that relates the scaling exponent
ν′ that characterizes the longer correlation length and ν
characterizing the shorter correlation length. In this Let-
ter, we propose a new general scaling relation and verify
its validity by Monte Carlo simulation of the XY model
with the Zq scaling field. To verify the validity of the new
scaling relation, below we first present the numerical re-
sults of the anisotropy order parameter, often referred to
as φ6, suggesting that previously-proposed scaling rela-
tions do not actually hold. We further argue that, unlike
the conventional finite-size scaling, the scaling plot of φ6

is not fully supported by renormalization group picture;
we present a more complete scaling argument supported
by Monte Carlo simulation.
Previously, a scaling relation was proposed by Ueno et

al. [9] and by Oshikawa [2]. Their argument is based
on the basic assumption that there is a well defined do-
main wall splitting the whole system and the excess free-
energy caused by the domain walls is the scaling vari-
able. The excess free-energy density per area of the

Fixpoints:
P = paramagnet
X = 3D XY critical point
Y = XY symmetry breaking
Q = Zq symmetry breaking

Okubo et al, PRB 2015

RG flows can be observed in MC simulations



MC simulations of classical 3D clock model

q = 6

H = �J
X

hiji

cos(⇥i �⇥j) Restricted to q clock angles

m
x

=

1

N

NX

i=1

cos(⇥

i

)

my =
1

N

NX

i=1

sin(⇥i)

Standard order parameter (mx,my)

Probability distribution P(mx,my) shows cross-over from U(1) to Zq for T<Tc

very significantly below Tc, whereas there are 8 prominent
peaks for L ! 32. Thus, in this case the U(1) length scale
4<!< 32. For the Z4 system T is much closer to Tc but
still some anisotropy is seen for L ! 4; it becomes much
more pronounced for L ! 32.

It is instructive to examine a spin configuration with
mx " my, i.e., ! " "=4. Figure 2 shows one layer of a Z4

system with L ! 10 below Tc. The spins align predomi-
nantly along ! ! 0 and ! ! "=2, with only a few spins in
the other two directions. Clearly there is some clustering of
spins pointing in the same direction—the system consists
of two interpenetrating clusters. Essentially, the configura-
tion corresponds to a size-limited domain wall between
! ! 0 and ! ! "=4 magnetized states.

Hove and Sudbø studied the q-state critical clock model
[13]. Upon course graining, they found that the structure in
the angular distribution diminished with the size of the
block spins for q # 5, as is expected for an irrelevant
anisotropy. Here we want to quantify the length scale !
at which the anisotropy becomes relevant for T < Tc.
Consider first what would happen in a course-graining
procedure for a single-spin configuration of an infinite
system in the ordered state very close to Tc. With individ-
ual spins having q preferred directions, as seen clearly in
Fig. 2, there would be q peaks in the probability distribu-
tion of angles !i. Averaging over blocks of l3 spins, we

would expect the angular dependence to become less pro-
nounced because of the averaging over spins pointing in
different directions (again, as is seen in Fig. 2). Sufficiently
close to Tc we would expect the distribution to approach
flatness. However, since we are in an ordered state, at some
l " ! one of the q preferred angles will become predomi-
nant and one peak in the histogram will start to grow. We
cannot simulate the infinite system and instead carry out an
analogous procedure versus the lattice size L, sampling a
large number of configurations. We calculate the order
parameters hmi and hmqi, defined in Eqs. (3) and (4), and
analyze them using

 hmi ! L$#f%tL1=$&; (5)

 hmqi ! L$#g%tL1=$q&: (6)

Here (5) is the standard finite-size ansatz with # ! %=$,
and the XY exponents are % " 0:348 and $ " 0:672 [16].
Equation (6) is an intuitive generalization of (5), which was
proposed and used also in Ref. [9], but we can actually also
derive the scaling function g%X& exactly.

Consider the scaling behavior of the order-parameter
distribution P% ~m&. It depends on the system size L and
the size of scaling operators perturbing the critical theory,
the temperature deviation t ! Tc $ T, and the presumed
irrelevant q-fold anisotropy strength h. By conventional
scaling arguments, we expect

 P% ~m;L; t; h& ! L#=2P̂%L# ~m; tL1=$; H ! hL3$"q&; (7)

where "q > 3 is the scaling dimension of the irrelevant
anisotropy. The prefactor above is determined from nor-
malization of the probability distribution. In the scaling
regime, jtj' 1, L( 1, so H is small. When the first two
arguments are O%1&, P̂ can be well approximated by taking
H ! 0 [with ‘‘corrections to scaling’’ of O%H&, i.e., sup-
pressed by L3$"q for a large system]. At H ! 0, the
distribution is fully XY symmetric, and the integral in
Eq. (4) vanishes. Thus, in this regime hmqi is small,
O%H&, and should be considered as arising from corrections

FIG. 2 (color online). Spins in one layer of the Z4 model with
L ! 10 at h=J ! 1, T=J ! 1:9< Tc. Here mx " my, corre-
sponding to ! " "=4 in P%r; !&. Arrows are color-coded accord-
ing to the closest Z4 angle; n"=2, n ! 0, 1, 2, 3.

FIG. 1 (color online). P%mx;my& at h=J ! 1 for q ! 4, 8, L !
4, 32. The temperature T=J ! 2:17 for Z4 and 1.15 for Z8, both
less than Tc=J " 2:20. The size of the histograms corresponds to
mx;y 2 )$1; 1*. Angular distributions P%!& with ! 2 )0; 2"* are
shown above each histogram.

PRL 99, 207203 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 NOVEMBER 2007

207203-2

Lou, Balents, Sandvik, PRL 2007

Can be quantified with
“angular order parameter”:

mq =

Z 2⇡

0
d⇥ cos(q⇥)P (⇥)

mq > 0 only if q-fold anisotropy



Studying RG flows in MC simulations
H. Shao, W. Guo, A. W. Sandvik (work in progress)

Um =

8
<

:

0, in paramagnet

0.77 . . . , at critical point

1, in ordered phase

Flows to these values with the
system size (inverse energy scale)

In principle the length scale 𝝃’ 
can be extracted from the flows

XY fixed point can be studied using the binder cumulant of m

Um = 2� hm4i
hm2i2

Use mq to quantify the degree 
of Zq symmetry 
- related to the dangerously 

irrelevant coupling

mq =

Z 2⇡

0
d⇥ cos(q⇥)P (⇥)
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Expected RG flows in DQC scenario

In the field theory the VBS corresponds to condensation of topological
defects (quadrupoled monopoles on square lattice)

Dx Dx

Dy Dy

Analogy with 3D clock models: The topological
defects should be dangerously irrelevant

Non-compact CP1 model
- no topo defects
- does not describe
   the VBS phase
- should describe the
    critical point (unless
    first-order transition)

 Renormalization Group (RG) Picture:

r

0

AF
U(1) SL

VBS

DQCP

Quadrupled

monopole/hedgehog

fugacity

RG “Flow Diagram”

        is “dangerously irrelevant”, ie. irrelevant at the critical point, 

but relevant in the ordered phase

Graph from Matthew Fisher

Fugacity of topological defects 𝞴4

Goal: Test scenario and obtain quantitative results using numerics



H =
�

�i,j⇥

Jij
⌅Si · ⌅Sj

= J1

= J2

g = J2/J1

• Ground states for small and large g are well understood 
‣ Standard Néel order up to g≈0.45; collinear magnetic order for g>0.6 

0 � g < 0.45 0.45 � g < 0.6 g > 0.6
• A non-magnetic state exists between the magnetic phases 
‣ Some recent calculations suggest spin liquid 
‣ Most likely a VBS (what kind? Columnar or plaquette?)

2D frustrated models are challenging:  
QMC sign problems, DMRG/tensors still difficult

VBS state in frustrated 2D Heisenberg model



The Heisenberg interaction is equivalent to a singlet-projector
Cij = 1

4 � ⇤Si · ⇤Sj

VBS states from multi-spin interactions
Sandvik, PRL 2007

• we can construct models with products of singlet projectors 
• no frustration in the conventional sense (QMC can be used) 
• correlated singlet projection reduces the antiferromagnetic order

+ all translations
   and rotations

The “J-Q” model with two projectors is

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous 
• Not a realistic microscopic model for materials 
• “Designer Hamiltonian” for VBS physics and Néel-VBS transition

 Use to test the deconfined quantum-criticality scenario



Critical behavior of the J-Q model

Dimer order parameter 

D
x

=
1

N

NX

i=1

(�1)xiS
i

· S
i+x̂

Dy =
1

N

NX

i=1

(�1)yiSi · Si+ŷ

⌘s ⇡ ⌘d ⇡ 0.27

Compute squared order parameters
hM2i, hD2i = hD2

x

+D2
y

i

⌘s = ⌘d?

FINITE-SIZE SCALING AND BOUNDARY EFFECTS . . . PHYSICAL REVIEW B 85, 134407 (2012)
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FIG. 12. (Color online) The staggered part, Eq. (19), of the long-
distance correlation function (at rmax =

√
2L) and the total dimer

order parameter for the J -Q2 model at J/Q2 = 0.03 and 0.10 on
periodic L × L lattices.

available, it would not be possible to unambiguously confirm
the presence of long-range VBS order, even though the order
parameter here is still above 10% of the maximum value.

Note that the long-distance correlation function decays
exponentially as a function of 1/L in a non-VBS state, i.e.,
much faster than the 1/L2 behavior of the total squared order
parameter. It is therefore also much easier to confirm the
absence of long-range order by studying the long-distance
correlations.

D. Quantum-critical scaling

Ultimately, the difficulties in extrapolating the VBS order
parameter to infinite size based on small systems will in
many cases be related to critical scaling in the proximity of
a quantum-critical point (or “pseudo-critical” scaling in cases
where the transition out of the VBS state is weakly first order).
A small system exhibits quantum criticality also slightly away
from the critical point. Hence data for a series of lattices may
appear to extrapolate to a disordered state, even though the
infinitely large 2D system is on the VBS side of a quantum
phase transition. According to conventional finite-size scaling
theory, the window around the critical point within which
a system of linear size L exhibits scaling is proportional to
L−1/ν , where ν is the exponent governing the divergence of
the correlation length. Depending on the prefactor, this window
may be sizable for practically reachable lattice sizes. As will be
shown next, this is one reason why fits to small-lattice data can
give misleading results, e.g., in the case of Q2-model results
in Fig. 7.

In addition to illustrating the near-critical VBS, the scaling
of the Néel order parameter will also be briefly discussed here.
According to past studies, both the J -Q2 and J -Q3 models
are strong candidates1,40 for the deconfined quantum-criticality
scenario,37 according to which both order parameters should
be critical exactly at the same point. Results for the J -Q2
model will be discussed here.

While all numerical results so far are consistent with a single
Néel-VBS transition point, it has proved remarkably difficult to

10
-3
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-2

10
-1

<
D

2 >

10 100
L

10
-3

10
-2

10
-1

<
M

2 >

 J/Q2 = 0
 J/Q2 = 0.03
 J/Q2 = 0.0447
 J/Q2 = 0.1

FIG. 13. (Color online) Size dependence of the VBS (top) and
Néel (bottom) order parameters of the J -Q2 model at four different
coupling ratios. The point J/Q2 = 0.0447 should be very close to the
quantum-critical value according to the scaling analysis of the spin
stiffness carried out in Ref. 41. The straight lines fitted through the
J/Q2 = 0.0447 data (for system sizes L ! 32) have slope −1.27 in
both cases.

determine the location (J/Q2)c of this transition precisely. The
most recent QMC studies point to a continuous transition with
unusually large scaling corrections in the quantities normally
used to extract the critical point, e.g., the spin stiffness and
Binder cumulants.41–43 These corrections have made it difficult
to reliably extrapolate the critical coupling ratio (J/Q2)c to in-
finite size. By using a logarithmic scaling correction to the spin
stiffness (which was not predicted in the original field-theory
description of deconfined quantum-critical points but may
appear with a modified action),96 (J/Q2)c = 0.0447 ± 0.0002
was obtained in Ref. 41. Using a conventional correction
∝L−ω, with small ω and a large prefactor (which potentially
could be a consequence of the dangerously irrelevant operator
responsible for the Z4 symmetric VBS), gives a similar result.

In Fig. 13, the two order parameters are graphed versus the
system size on log-log scales for coupling ratios close to the
critical value. The Néel order parameter ⟨M2⟩ (the squared
sublattice magnetization) is the size-normalized (π,π ) Fourier
transform of the spin correlation function (9). Both order
parameters indeed exhibit critical scaling at (J/Q2) = 0.0447.
For other couplings the curves fan out in the way typical for
critical points.

Interestingly, at J/Q2 = 0.0447 both order parameters
scale as L−(1+η) with η ≈ 0.27 (with a purely statistical
error bar of about 0.01) when L " 32 systems are used in
the fits. For the sublattice magnetization, this exponent is
slightly smaller than in previous works,39,40 while the VBS

134407-11

(Sandvik, PRB 2012)

There may be O(5) symmetry 
[Nahum, Serna, Chalker, Ortuno, Somoza, 
PRL 2015]

Need to compute the exponents more systematically

⌅M =
1
N

�

i

(�1)xi+yi ⌅Si

Staggered magnetization

Exponents, especially ν, show large 
finite-size drifts [Harada et al., PRB 2013]



Emergent U(1) and RG flows in the J-Q3 model
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with !=1,2 , . . . ,N and P%1&=!. An SU%N& singlet of spins i
and j on different sublattices is given by

!singlet"ij #
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$N
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N
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QMC algorithms using these SU%N& spins in the valence-
bond basis are simple generalizations of the SU%2&
case.16,17,21 Instead of spins ↑ and ↓ for SU%2&, there are N
colors, and, thus, N states of the space-time loops in the loop
algorithm.16 The off-diagonal matrix elements of the singlet
projection operators are 1 /N instead of 1/2, and the overlap
of two valence-bond states is generalized to Nn"−L2/2, where
n" is the number of loops in the transposition graph. Four-
and six-spin terms %3& and %4& are written explicitly using
products of singlet projectors and have obvious generaliza-
tions to SU%N&.

Our results for the SU%3& and SU%4& versions of the J-Q2
model are consistent with continuous AF-VBS critical
points, with no signs of first-order behavior. The critical cou-
plings are qc=0.335%2& and qc=0.082%2& for N=3 and 4,
respectively. Scaling plots giving the critical exponents are
shown in Fig. 3 and numerical values are listed in Table I. As
a function of N, " does not change appreciably, #s increases
slowly, and #d increases significantly. In the N=$ theory
#s=1.3 A VBS exponent #d% %N−1& is expected for N→$
on account of the divergent scaling dimension of monopoles
in the CPN−1 field theory.23 Our results are consistent with
this behavior, #d(%N−1& /5, already for N=2,3 ,4.

We could, in principle, consider still higher N, but with
J&0 the system is always in the VBS state for N=5 and
higher.18,19 A transition could presumably be reached for J

'0, but this causes QMC sign problems. Alternatively, with-
out sign problems, one could use longer-range unfrustrated
interactions to enforce antiferromagnetic correlations.

The dimer order distribution P%Dx ,Dy& can be used to
investigate the VBS order-parameter symmetry.7,18 As shown
in Fig. 4, for large q the robust VBSs in the SU%2& J-Q3
model and the SU%3& and SU%4& versions of the J-Q2 model
result in histograms with clearly visible columnar Z4 features
%i.e., peaks on the Dx and Dy axis, as opposed to 45° rotated
histograms expected for a plaquette state&. However, in the
SU%2& J-Q2 model the histograms are ring shaped for all
system sizes currently accessible, even in the extreme case of
q=1%J=0&. In all cases, we see U%1& symmetric histograms
as the critical point is approached, in agreement with one of
the salient features of deconfined quantum criticality.3

Defining an order parameter sensitive to the symmetry,

D4
2 =) dDxdDyP%Dx,Dy&%Dx

2 + Dy
2&cos%4(&

=) dr)
0

2)

d(P%r,(&r3 cos%4(& , %12&

where ( is the angle corresponding to a point %Dx ,Dy&, we
proceed as in Ref. 22 %which deals with a classical system
with a dangerously irrelevant perturbation& to extract the ex-
ponent governing the length scale * of the Z4−U%1& cross-
over %and the spinon confinement&. Z4 features should appear
for L&*, which is predicated3 to scale as **+a4 where + is
the correlation length and a4&1. We analyze D4 assuming
the scaling form;22

D4
2 = L−%1+#d&F4%qL1/a4"& . %13&

This form describes the crossover, as shown in Fig. 5 in two
cases. The values of a4 are listed in Table I. The large error-
bars reflect slow evolution of the VBS angle in the QMC
simulations. It is nevertheless clear that a4&1 %and increas-
ing with N&, reflecting emergent U%1& symmetry due to a

FIG. 3. %Color online& Scaling of the spin and dimer order pa-
rameters of the SU%3& and SU%4& J-Q2 models.

FIG. 4. %Color online& Dimer order distribution P%Dx ,Dy& for
L=32 systems. The left panels are for the J-Q3 model at %a& q
=0.635 and %b& q=0.85, and the right panels are for the SU%3& J-Q2
model at %c& q=0.45 and %d& q=0.65.

ANTIFERROMAGNETIC TO VALENCE-BOND-SOLID… PHYSICAL REVIEW B 80, 180414%R& %2009&
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P(Dx,Dy): Emergent U(1) symmetry
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colors, and, thus, N states of the space-time loops in the loop
algorithm.16 The off-diagonal matrix elements of the singlet
projection operators are 1 /N instead of 1/2, and the overlap
of two valence-bond states is generalized to Nn"−L2/2, where
n" is the number of loops in the transposition graph. Four-
and six-spin terms %3& and %4& are written explicitly using
products of singlet projectors and have obvious generaliza-
tions to SU%N&.
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model are consistent with continuous AF-VBS critical
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on account of the divergent scaling dimension of monopoles
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We could, in principle, consider still higher N, but with
J&0 the system is always in the VBS state for N=5 and
higher.18,19 A transition could presumably be reached for J

'0, but this causes QMC sign problems. Alternatively, with-
out sign problems, one could use longer-range unfrustrated
interactions to enforce antiferromagnetic correlations.
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investigate the VBS order-parameter symmetry.7,18 As shown
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result in histograms with clearly visible columnar Z4 features
%i.e., peaks on the Dx and Dy axis, as opposed to 45° rotated
histograms expected for a plaquette state&. However, in the
SU%2& J-Q2 model the histograms are ring shaped for all
system sizes currently accessible, even in the extreme case of
q=1%J=0&. In all cases, we see U%1& symmetric histograms
as the critical point is approached, in agreement with one of
the salient features of deconfined quantum criticality.3

Defining an order parameter sensitive to the symmetry,

D4
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2 + Dy
2&cos%4(&

=) dr)
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d(P%r,(&r3 cos%4(& , %12&

where ( is the angle corresponding to a point %Dx ,Dy&, we
proceed as in Ref. 22 %which deals with a classical system
with a dangerously irrelevant perturbation& to extract the ex-
ponent governing the length scale * of the Z4−U%1& cross-
over %and the spinon confinement&. Z4 features should appear
for L&*, which is predicated3 to scale as **+a4 where + is
the correlation length and a4&1. We analyze D4 assuming
the scaling form;22

D4
2 = L−%1+#d&F4%qL1/a4"& . %13&

This form describes the crossover, as shown in Fig. 5 in two
cases. The values of a4 are listed in Table I. The large error-
bars reflect slow evolution of the VBS angle in the QMC
simulations. It is nevertheless clear that a4&1 %and increas-
ing with N&, reflecting emergent U%1& symmetry due to a

FIG. 3. %Color online& Scaling of the spin and dimer order pa-
rameters of the SU%3& and SU%4& J-Q2 models.

FIG. 4. %Color online& Dimer order distribution P%Dx ,Dy& for
L=32 systems. The left panels are for the J-Q3 model at %a& q
=0.635 and %b& q=0.85, and the right panels are for the SU%3& J-Q2
model at %c& q=0.45 and %d& q=0.65.

ANTIFERROMAGNETIC TO VALENCE-BOND-SOLID… PHYSICAL REVIEW B 80, 180414%R& %2009&

RAPID COMMUNICATIONS

180414-3

Define D4 as in the clock model  
to quantify degree of Z4 symmetry

Use Binder cumulants for   
Neel (Um) and dimer order (UD) 
- UD - Um shows flows to phases and dqc point

Shows similarity with the clock models 
- but clock models only have one ordered phase 
- different universality expected

Use systematic finite-size scaling approach for exponents
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Finite-size scaling hypothesis (general)

⇠ / |�|�⌫ , � = T � TcCorrelation length divergent for T → Tc

Other singular quantity: A(L ! 1) / |�| / ⇠�/⌫

For L-dependence at Tc just let ξ→L: A(T ⇡ Tc, L) / L�/⌫

2D Ising universality class

Critical T known

When these are not known,
treat as fitting parameters
- or extract in other way
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t ̸= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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Close to critical point: A(L, T ) = L�/⌫g(⇠/L) = L�/⌫f(�L1/⌫)



2D Ising model; MC results

Having access to two different slopes at the crossing point, we can take the difference of the
logarithm of these two slopes;

ln[s(�⇤, rL)]� ln[s(�⇤, L)] =
1

⌫
ln(r) + aL�! + . . . (16)

with some constant a. We can therefore define an exponent estimate ⌫⇤(L) corresponding to the
crossing point

1

⌫⇤(L)
=

ln[s(�⇤, rL)]� ln[s(�⇤, L)]

ln(r)
, (17)

and this estimate approaches the correct exponent at the rate L�! for large L;

1

⌫⇤(L)
=

1

⌫
+ bL�! + . . . (18)

with some constant b and various higher-order terms left out. With data for several system-size
pairs (L, rL), 1/⌫ can be obtained by data fitting, either using the leading form with only the
L�! correction for sizes large enough that the higher-order terms can be neglected, or including
higher-order terms explicitly.

2 Tests on the 2D Ising model
In order to demonstrate the reliability of the method of obtaining the critical point and exponents
from crossing points, we here present results based on the Binder cumulant U of the 2D Ising
model;

U =
1

2

 

3� hm4i
hm2i2

!

, (19)

where m is the magnetization

m =
1

N

NX

i=1

�i, �i 2 {�1,+1}. (20)

Monte Carlo simulations were carried out on lattices of size L ⇥ L with periodic boundary
conditions, using a mix of Wolff and Swendsen-Wang (SW) cluster updates, with each sweep
of Wolff updates (where on average ⇡ N spins are flipped) followed by an SW update where the
system is decomposed into clusters and each is flipped with probability 1/2. The SW clusters
are also used to measure hm2i and hm4i with improved estimators (after each SW update). We
carried out simulations of sizes L = 6, 7, . . . , 20, 22, . . . , 36, 40, . . . , 64, 72, . . . , 128, at 20� 30

temperatures in the neighborhood of the relevant crossing points of the Binder cumulant for
system-size pairs (L, 2L), i.e., using aspect ratio r = 2 in the expressions of Sec. 2. Up to
5⇥ 109 measurements were collected for the smaller sizes and 108 for the largest sizes.
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Systematic critical-point analysis

Binder cumulant 
- dimensionless 
- size-independent at Tc

Curves cross asymptotically at Tc



Systematic crossing-point analysis

⇒ scaling corrections in crossings

  ~L-(1/ν+ω)    for T* → Tc


   ~L-ω          for U* → U(Tc)

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...
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U
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,L
)
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Drift in (L,2L) crossing points
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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Use correction with free exponent

U = U(�L1/⌫ , L�!1 , L�!2 , . . .)



Correlation-length exponent ν

1

ln(2)
ln

✓
s(2L, T ⇤)

s(L, T ⇤)

◆
=

1

⌫
+ aL�! + . . .

Can be extracted from the

slope of the Binder cumulant s(L, T ) =

dU(L, T )

dT

Evaluate at crossing point

for sizes (L,2L)
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Figure 5: Estimate of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (17) applied to the Binder cumulant. The curve is a fit to the form
(10) including all points (L � 6).

along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2/N

dof

i < 1, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.

These results demonstrate the unbiased nature of the crossing-point analysis when it is car-
ried out properly. We advocate this systematic way to determine the critical temperature (or
critical coupling of a quantum phase transition) and study the critical exponents, instead of of-
ten used [also in DQC studies (14,19,21)] data-collapse techniques where many choices have to
be made of the range of data included, use of corrections, etc. Although trends when increasing
the system size can also be studied with data collapse [as done in ref. (19))], the solid grounding
of the present scheme directly to the finite-size scaling form (7) makes it the preferred method.
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J-Q model: Exponent ν from crossing-point analysis

R1 =
hm2

szi
h|msz|i2

Binder ratio of the spin order parameter

Dimensionless quantity:

- Crossing of R1(g,L), R1(g,rL), g=J/Q,

   g*(L), analyze size dependence (using r=2)

H. Shao, W. Guo, A. W. Sandvik (Science 2016)
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Figure 2: Crossing-point analysis of (L, 2L) pairs for the size of the spinon bound state (left) and
the Binder ratio (right). The monotonic quantities are fitted with simple power law corrections,
while two subleading corrections were included in the fits of the non-monotonic quantities.

netization msz as R
1

= hm2

szi/h|msz|i2, which has smaller subleading scaling corrections than

R
2

= hm4

szi/hm2

szi2. Here we use T > 0 QMC simulations at � = 1/T = L as in Ref. (18).

Results are shown in the right column of Fig. 2. The non-monotonic behaviors mentioned above

are clearly visible in the crossing points. Unless only the largest sizes are used, the data must

be fitted with several corrections and precise values of the critical point and the critical R
1

are

difficult to extract. The behavior is nevertheless consistent with gc obtained above from ⇤/L.

The crossing value R⇤
1

for L ! 1 has an uncertainty of over 1% because of an apparently

small value of the subleading exponent; ! ⇡ 0.5. Interestingly, the slope estimator (4) of the

exponent 1/⌫ is monotonic and requires only a single L�! correction, also with ! ⇡ 0.5, even

for systems as small as L = 6 (the fit shown includes L � 8 but accommodates well also the

L = 6 point). The extrapolated exponent ⌫ = 0.446(8) is significantly smaller than ⌫ 0 extracted

above and close to the value obtained recently for the loop model (24). Note that the exponent

8
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Exponent ν: crossing-point analysis

R1 =
hm2

szi
h|msz|i2

Binder ratio of the spin order parameter

Dimensionless quantity:

- Crossing of R1(g,L), R1(g,rL), g=J/Q,

   g*(L), analyze size dependence (using r=2)

- Small correction exponent; ω ≈ 0.5

- ν = 0.45 +/- 0.01

No sign of first-order transition (then ν=1/3 in finite-size scaling)

H. Shao, W. Guo, A. W. Sandvik (unpublished)

g⇤(L) = gc + aL�(1/⌫+!) + . . .

R⇤
1(L) = R1c + aL�! + . . .

s(g, L) = dR1(g, L)/dg

1

⌫⇤
= ln[s(g⇤, rL)/s(g⇤, L)] =

1

⌫
ln(r) + aL�! + . . .

(slope)



Two length scales - VBS domain walls 

Deconfined quantum-criticality: VBS domain wall should have this property

3. Results
We chose a basis state |ψ0⟩ = |Vr⟩ as the trial state and consider the cases that |Vr⟩ in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr⟩, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W ̸= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0),W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W ̸= 0 (upper panel).
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Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of ⟨Bα(r)⟩ for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which

3

Do finite-size scaling studies of VBS domain walls

In some classical systems (clock models,...) the thickness of a domain wall 
is larger than the correlation length: ⇠ ⇠ ��⌫ , ⇠0 ⇠ ��⌫0

, ⌫0 > ⌫



Warm-up: classical systems, single length scale (ξ’=ξ)

General scaling theory (following Fisher et al., PRB 1989)
Classical d-dimensional system, free-energy density (singular part)

f(�, L) = ⇠�dY (⇠/L), ⇠ ⇠ ��⌫

Excess free energy in presence of domain wall

�F (�, L) = ⇠�dỸ (⇠/L)Ld

We can also see that

�F (�, L) = ⇢(�)

✓
�

⇠

◆2

⇠Ld�1

φ = total order-parameter “twist” 

ρ = stiffness constant

Consistency between the two expressions for ΔF requires Ỹ ⇠ ⇠

L
, !

�F ⇠ ⇠�(d�1)Ld�1

Test with Monte Carlo simulations



Monte Carlo simulations: 2D, 3D Ising models

We have developed efficient “multi-canonical” MC method for

calculating ΔF(L) = Fwall(L) - Funiform(L)

�F ⇠ ⇠�(d�1)Ld�1

Define:  = �F/Ld�1

 ⇠ ⇠�(d�1)

Finite-size scaling

exactly at the critical

point (T=Tc):
⇠ ! L

(L) ⇠ L�(d�1)

MC data analysis:

- assume κ ~ L-p

- extract p(L) using (L,2L) data:

Agreement with expectation p → d-1 when L →∞

p(L) = ln[(L)/(2L)]/ ln(2)



Quantum system + two length scales

Quantum-critical point

- dynamic exponent z; d → d+z

- F becomes ground-state energy E0

Generalizing the Fisher et al. 

approach to 2 lengths:
Energy in the thermodynamic limit 

should be controlled by ξ, since 

⇠�(d+z) >> ⇠0�(d+z)

 ⇠ ⇠�(d+z�2)⇠0�1

Deconfined quantum criticality: d=2, z=1 → κ ~ ξ-1 ξ’-1

Consistency between the two relationships requires

Ỹ ⇠ L

⇠0
⇠2

L2
=

⇠2

⇠0L
! �E0 ⇠ ⇠�(d+z�2)⇠0�1Ld�1

Two divergent lengths
⇠ ⇠ ��⌫ , ⇠0 ⇠ ��⌫0

, ⌫0 > ⌫

�E0(�, L) = ⇢(�)

✓
�

⇠0

◆2

⇠0Ld�1�E0(�, L) = ⇠�(d+z)Ỹ (⇠/L, ⇠0/L)Ld



VBS Domain-wall scaling in the critical J-Q model

Two kinds of VBS domain walls can be

imposed in open-boundary systems

� = ⇡/2

� = ⇡
�!

 �

 ⇠ ⇠�1⇠0�1

Ambiguity in finite-size scaling:

option 1) ξ  → L, ξ’  → Lν’/ν : κ ~ L-(1+ν’/ν) 

option 2) ξ  → L, ξ’  → L:      κ ~ L-2

option 3) ξ’ → L, ξ   → Lν/ν’:  κ ~ L-(1+ν/ν’)

Results show option 3 (exponent < 2):

ν/v’ ≈ 0.715 +/- 0.015

This result demonstrates explicitly two divergent length scales! 
- different from the standard “dangerously irrelevant” perturbation

3. Results
We chose a basis state |ψ0⟩ = |Vr⟩ as the trial state and consider the cases that |Vr⟩ in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr⟩, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W ̸= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0),W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W ̸= 0 (upper panel).
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-0.64

e W

0 1 2 3 4 5
m/N  (L=96)

0

0.5

1

P(
W

)

W=(0,0)
W=(1,0)
W=(2,0)

Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of ⟨Bα(r)⟩ for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which

3

- π wall splits into two π/2 walls

p(L) = ln[(L)/(2L)]/ ln(2) ! 1 + ⌫/⌫0



Domain-wall energy in the 3D clock model

The “dangerously irrelevant” perturbation in the J-Q model 
is more serious (“super-dangerous”?)

3D q-state clock model (q>3) 
- basic example of dangerously irrelevant perturbation [to U(1) symmetry]

H = �J
X

hiji

cos(⇥i �⇥j)

q = 6

- restriction to

   “clock” angles

 ⇠ 1

⇠

1

⇠0

The prediction for

the domain wall

energy in the thermodynamic

limit is

Finite-size scaling at Tc shows
 ⇠ L�2

⇠0 ⇠ ⇠⌫
0/⌫ , ⌫0/⌫ ⇡ 2 (q = 6)



Deconfinement of spinons

The VBS state is confined

- confining string

- excitations carry S=1

- “triplon” = bound spinon pair

Nature of magnetic excitations

The confining string weakens

as the critical point is approached

- deconfinement

- spinon (S=1/2) excitations

  liberated at the critical point

What is the size Λ of the bound 
spinon pair?

The theory predicts Λ ~ ξ’ (or possibly ξ < Λ < ξ’....)
QMC simulations can be carried out in the valence-bond basis

- lowest state in each spin sector, S=0,1,2,...

- S=1 state used to study triplons and spinons

Test the scaling of the spinon bound state in the J-Q model



Liang PRB 1989; Sandvik PRL 2005, Sandvik, Evertz PRB 2010

Loop updates similar to those in finite-T methods

(world-line and stochastic series expansion methods)

• “measure” using valence bonds

Put the spins back in a way compatible 

with the valence bonds (singlets) and 
sample in a combined space of spins 
and bonds

Ground-state projector QMC with valence bonds 

|����|

AProject valence bonds with Hm or exp(-βH)

�Vl|Vr⇥|Vr�|Vl�

Expectation values (correlation functions) 

computed using transition graphs

Total spin S=0 conserved, faster convergence than T→0 method



Consider Sz=S

- for even N spins: N/2-S bonds, 2S unpaired “up” spins 

- for odd: (N-2S)/2 bonds, 2S upnpaired spins
- transition graph has 2S open strings

S = 0

S = 1/2

S = 1

model [18]). We have also studied the J-Q2 model, i.e.,
using two singlet projectors in the Q term in (1), for which
gc ! 0:848 31. We focus here on the J-Q3 model because
it is more strongly VBS ordered at J ¼ 0.

We also wish to study an ordered Néel state, which in an
SU(2) invariant 1D system can only be achieved with long-
range interactions. The Hamiltonian

H ¼
XN

i¼1

XN=2

r¼1

ð$1Þr$1JrSi & Siþr; Jr > 0 (2)

was studied in [19]. With Jr ¼ 1=r!, a quantum phase
transition from the critical state for !> !c to a Néel state
for !< !c was observed, with !c ! 2:2. Here we use
a slightly different model, with Jr ¼ 1=r! for odd r but
Jr ¼ 0 for even r, to make the system amenable to QMC
simulations in the valence-bond basis [13]. We choose
! ¼ 3=2, for which the system is Néel ordered.

To demonstrate the ground states of interest—VBS,
critical, and Néel—in Fig. 1 we plot the spin and dimer
correlation functions, defined by

CðrÞ ¼ hSi & Siþri; (3)

DðrÞ ¼ hðSi & Siþ1ÞðSiþr & Siþ1þrÞi; (4)

and computed using the QMC method discussed below.
We multiply CðrÞ by ð$1Þr to cancel the signs of the

correlations and graph ð$1Þr½DðrÞ $Dðrþ 1Þ), which
for large r can be regarded as the VBS order parameter.
QMC method.—The valence-bond QMC algorithm and

its generalizations to S > 0 states have been discussed in
several papers [13–15,20]. Here we review key aspects of
the basis and the form of the generated ground states.
Acting with a high power of the Hamiltonian Hm on a

trial state j!ti, with H written as a sum of singlet projec-
tors (individual ones and products of three, for J and Q
interactions, respectively), the ground-state normalization
h!0j!0i is sampled (for m large enough for Hmj!ti to be
completely dominated by j!0i). In an S ¼ 0 state for even
N, the states are expressed as superpositions of bipartite
valence-bond states jV!i, i.e., products of N=2 singlets

ða; bÞ ¼ ð"a#b $ #b"aÞ=
ffiffiffi
2

p
, where a and b are sites on sub-

lattice A and B, respectively. We use trial states of the
amplitude-product form [21].
The valence-bond basis is nonorthogonal, and the nor-

malization of the projected ground state is therefore of the
form h!0j!0i ¼

P
!"f"f!hV"jV!i, where f"; f! are not

known explicitly. Implicitly, the probability of generating a
pair of states is PðV!; V"Þ ¼ f"f!hV"jV!i. The overlap

hV"jV!i ¼ 2N0$N=2, whereN0 is the number of loops in the
transition graph of the two states. Figure 2(a) shows a case
with N0 ¼ 1. Matrix elements of the form hV"jAjV!i for
many observables A of interest depend on the loop struc-
ture of the transition graph [21,22].
For S > 0 and magnetizationmz ¼ S the states have 2mz

unpaired " spins and ðN $ 2mzÞ=2 singlet bonds (as dis-
cussed, e.g., in [14,15]). For odd N, which we use for S ¼
1=2, the system is in principle frustrated by periodic
boundaries. This is a finite-size effect, however, which
vanishes when N ! 1 (at least for observables probing
distances r * N). The QMC loop updates [20] automati-
cally exclude frustrated negative-sign configurations,
and this should, thus, be the most rapid way to approach
N ¼ 1. Configurations for S ¼ 1=2 and S ¼ 1 states are
illustrated in Figs. 2(b) and 2(c). We note that the valence-
bond basis with two unpaired spins was used in a pioneer-
ing variational study on spinon deconfinement in a VBS
state of a 1D frustrated model [1].
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FIG. 1 (color online). Spin (a) and dimer (b) correlations of
systems with N ¼ 1024 spins. Results for the J-Q3 model in the
VBS phase (J ¼ 0, g ¼ 4; 1) and at criticality (gc) are shown
along with the behavior in the Néel state of the long-range model
with ! ¼ 3=2. The curves in (a) are fits to the form / e$r=#

(with # ! 4 at J ¼ 0). The straight lines at the gc data show the
expected +1=r critical behavior [27].

FIG. 2 (color online). Illustration of the basis for states with
(a) S ¼ 0 (even N), (b) S ¼ 1=2 (odd N), and (c) S ¼ 1 (even
N). The bonds and unpaired spins of the bra and ket states are
shown below and above the line of sites, respectively.

PRL 107, 157201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

157201-2

Overlaps and matrix elements involve loops and strings

- very simple generalizations of the S=0 case

- loops have 2 states, strings have 1 state 

Access to spinons in QMC simulations

Extended valence-bond basis for S>0 states
Tang, Sandvik PRL 2011, Banerjee, Damle JSTAT 2010

Use to study spinon bound states and unbinding 



J-Q model deep in VBS phase

transition graphs evolving in imaginary time



transition graphs evolving in imaginary time

J-Q model at the critical point



Exponent ν’ (confinement lengt)
H. Shao, W. Guo, A. W. Sandvik (Science 2016)

Define Λ (size of spinon bound state)

as root-mean-square string distance
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Figure 2: Crossing-point analysis of (L, 2L) pairs for the size of the spinon bound state (left) and
the Binder ratio (right). The monotonic quantities are fitted with simple power law corrections,
while two subleading corrections were included in the fits of the non-monotonic quantities.

netization msz as R
1

= hm2

szi/h|msz|i2, which has smaller subleading scaling corrections than

R
2

= hm4

szi/hm2

szi2. Here we use T > 0 QMC simulations at � = 1/T = L as in Ref. (18).

Results are shown in the right column of Fig. 2. The non-monotonic behaviors mentioned above

are clearly visible in the crossing points. Unless only the largest sizes are used, the data must

be fitted with several corrections and precise values of the critical point and the critical R
1

are

difficult to extract. The behavior is nevertheless consistent with gc obtained above from ⇤/L.

The crossing value R⇤
1

for L ! 1 has an uncertainty of over 1% because of an apparently

small value of the subleading exponent; ! ⇡ 0.5. Interestingly, the slope estimator (4) of the

exponent 1/⌫ is monotonic and requires only a single L�! correction, also with ! ⇡ 0.5, even

for systems as small as L = 6 (the fit shown includes L � 8 but accommodates well also the

L = 6 point). The extrapolated exponent ⌫ = 0.446(8) is significantly smaller than ⌫ 0 extracted

above and close to the value obtained recently for the loop model (24). Note that the exponent

8

Crossing-point analysis of Λ/L
Λ/L crossing points converge better

than in other cases (monotonic)
Slope analysis shows ν’ = 0.58(2) > ν
⇒ Transition is associated with 
     spinon deconfinement
v/v’ = 0.77 +/- 0.03

How do the two divergent lengths affect other observables?

3. Results
We chose a basis state |ψ0⟩ = |Vr⟩ as the trial state and consider the cases that |Vr⟩ in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr⟩, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W ̸= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0),W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W ̸= 0 (upper panel).
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Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of ⟨Bα(r)⟩ for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which

3

In OK agreement with 0.715 +/- 0.015

from VBS domain-wall energy



Anomalous scaling or first-order transition?

First-order scenario: Prokofe’v, Svistunov, Kuklov, Troyer,... (2008-2013) 
                                          Jiang, Nyfeler, Chandrasekharan,Wiese (2008)

Jiang et al. (2008)

Linear divergence (first-order)?

Anomalous scaling of winding numbers
�W 2⇥ = �W 2

x ⇥ + �W 2
y ⇥ + �W 2

� ⇥

= 2�⇥s +
4N

�
⇤

z = 1,� ⇥ L �
⇥s ⇥ L�1, ⇤ ⇥ L�1

� ⇤W 2⌅ = constant
Multiplicative log correction?

(Sandvik, PRL 2010)

Sandvik, PRL 104, 177201 (2010)Recent large-scale QMC results

� � L (� = L, � = L/4)

• Stochastic series expansion
• up to 256×256 lattices

Same finite-size definition 
of critical point as used by 
Kuklov et al. and Jiang et al.
• fixed probability of the 

generated configurations 
having Wx=Wy=Wτ=0

Logarithmic divergence of <W2>
• scaling correction (not 1st-order)

Anomalous scaling behavior



Quantum criticality with two lengths
H. Shao, W. Guo, A. W. Sandvik (Science 2016)

Two divergent lengths tuned by one parameter: ⇠ / ��⌫ , ⇠0 / ��⌫0

Finite-size scaling of some quantity A. Thermodynamic limit: A / �

A(�, L) = L�/⌫f(�L1/⌫ , �L1/⌫0
)

Conventional scenario

f(�L1/⌫ , �L1/⌫0
) ! (�L1/⌫)When L→∞:

Alternative scenario
A(�, L) = L�/⌫0

f(�L1/⌫ , �L1/⌫0
)

f(�L1/⌫ , �L1/⌫0
) ! (�L1/⌫0

)When L→∞:
Example: Spin stiffness: κ=ν(z+d-2). At criticality:

⇢s / L�(z+d�2) ⇢s / L�(z+d�2)⌫/⌫0
or

The first scenario has so far been assumed

- unexplained drifts in Lρs in J-Q and other models (z=1, d=2)

Can alternative scaling form resolve the enigma?



Evidence for unconventional scaling in J-Q model

Behavior interpreted as first-order transition is actually unconventional scaling!

 Finite-temperature behaviors are similarly affected

(L,2L) crossing-point analysis of Lρs and L𝛘
The conventional scaling form              Replaced by new form

⇢s / L�(z+d�2) ⇢s / L�(z+d�2)⌫/⌫0

0 0.1 0.2 1/L
0.00

0.05

0.10

0.15

κ

0 50 100 L
0.0

0.2

0.4

0.6

ρ
s
L

0 50 100 L
0.10

0.12

0.14

0.16

χL

0 0.1 0.2
1/L

1.5

1.6

1.7

ε=1+ν/ν’

0 0.05 0.1 1/L
0.1

0.2

ε=1-ν/ν’

0 0.05 0.1 1/L
0.0

0.1

0.2

ε=1-ν/ν’

(a) domain wall energy (b) spin stiffness (c) susceptibility

Figure 3: Consistent anomalous critical scaling of different quantities y at J/Q = 0.0447. The
insets show running exponents ✏(L) = ln(yL/y2L)/ ln(2) based on (L, 2L) data. In (a), a fit of
✏(L) gave 1 + ⌫/⌫ 0

= 1.715 for L ! 1 and a correction / L�1.2. In (b) and (c), 1 � ⌫/⌫ 0

was fixed at the corresponding value 0.285 and corrections / L�! with ! ⇡ 0.3 were fitted
to the data for large systems. The same values of ⌫/⌫ 0 and ! were used in curves of the form
L1�⌫/⌫0

(a+ bL�!
) in the main (b) and (c) graphs.

Ansatz and discuss simulations of domain walls in a 3D clock model and the J-Q model. At

criticality, in the conventional scenario (exemplified by the clock model) both ⇠ and ⇠0 saturate

at L and  / L�2. For the J-Q model we instead find  / L�a with a = 1.715(15) for large

L, as illustrated in Fig. 3(a). Our interpretation of this unconventional scaling is that, when

⇠0 saturates at L, ⇠ also stops growing and remains at ⇠ / L⌫/⌫0 . Thus  / L�(1+⌫/⌫0) with

⌫/⌫ 0
= a � 1 = 0.715(15), which agrees reasonably well with ⌫/⌫ 0

= 0.76(3) obtained from

the quantities in Fig. 2. The large error bar on the latter ratio leaves open the possibility that the

spinon confinement exponent is between ⌫ and the domain-wall exponent ⌫ 0 [4].

We also calculated the critical spin stiffness ⇢s and susceptibility �(k = 2⇡/L) for the

smallest wave-number k = 2⇡/L, using T = 1/L. Conventional quantum-critical scaling

dictates that these quantities should decay as 1/L when z = 1 [2]. Instead, Figs. 3(b) and

(c) demonstrate clearly slower decays, L⇢s and L� being slowly divergent, as had been found

in earlier works as well[17, 18, 30, 19, 21]. The unconventional limit of the scaling function

(2) requires L⇢s and L� to diverge as L1�⌫/⌫0 . The behaviors are indeed consistent with this

form and ⌫/⌫ 0 ⇡ 0.715 extracted from , with a correction / L�! with a small ! (close to

8

⌫/⌫0 ⇡ 0.72

Fixed; taken from

domwain-wall

scaling fit
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Figure S10: Finite-temperature scaling in the critical J-Q model based on QMC results from
Ref. [30]. The data are analyzed using the forms (S46) and (S47) with d = 2, z = 1, and
the ratio ⌫/⌫ 0

= 0.715 determined previously. In (a) the correlation length has been multiplied
by T and in (b) the susceptibility has been divided by T , so that conventional quantum-critical
scaling demands the results to approach constants when 1/T ! 1. The fits shown here gave
the correction exponents !⇠ ⇡ 0.40 and !� ⇡ 0.55 in Eqs. (S46) and (S47).

suggests a modified power law instead of a logarithm, but the consistent behaviors of the three
quantities found in Ref. [30] still hold numerically within the temperature regime considered
(since the data fits work).

Since the spinons at the critical point are not completely free particles in the DQC theory
[3, 4] one cannot expect the free spinon-gas picture to remain strictly correct down to T ! 0,
but it appears to apply in a window of rather low temperatures, where the log-form used for the
susceptibility in Ref. [30] can not be distingushed from the modified power-law form proposed
here. It would be interesting to carry out simulations at still lower temperatures, to study how
the logarithmic fit to �T/T presumably breaks down eventually and test further the anomalous
power laws where the correction terms in Eqs. (S46) and (S47) become inignificant.

5 Quantum Monte Carlo simulations
The QMC calculations of the spin stiffness and susceptibility were carried out with the standard
Stochastic Series Expansion algorithm, using the same program as in Ref. [18], to which we
refer for technical details and further references. For a given system size, the method produces
unbiased results only affected by well-characterized statistical errors of the MC sampling.

Ground-state calculations in both the S = 0 and S = 1 sector were carried out with projector
QMC simulations in the basis of valence bonds (singlet pairs) and unpaired spins, following
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⌫/⌫0 ⇡ 0.72

Fixed; taken from

domain-wall

scaling fit

4 Anomalous critical scaling at finite temperature
One of the experimentally most important aspects of quantum criticality is that the quantum-
critical point at T = 0 governs the behavior also in a wide T > 0 region which expands out from
(gc, T = 0) with increasing T—the so-called quantum-critical fan. In the standard scenario [2],
the correlation length exactly at gc diverges when T ! 0 as ⇠T / T�1/z and the uniform
magnetic susceptibility approaches 0 as �T / T d/z�1. These forms are not seen in simulations
of the J-Q model in the neighborhood of its critical point, however [18, 30].

Given our findings where the ratio ⌫/⌫ 0 modifies the standard power laws in finite-size scal-
ing, it is also natural to expect modifications of the powers of the temperature for the system in
the thermodynamic limit. This expectation follows from the Euclidean path-integral mapping,
where the inverse temperature 1/T of a d-dimensional system corresponds to the thickness in
the imaginary-time dimension of the (d + 1)-dimensional effective system (LT = c/T , c be-
ing velocity of the critical excitations). Finite-temperature scaling is therefore obtained as a
generalized finite-size scaling in LT [2].

We here re-analyze the critical J-Q data of Ref. [30] to test whether power laws modified
by ⌫/⌫ 0 can explain the observed scaling anomalies. The data were generated in Ref. [30] using
QMC calculations on L ⇥ L lattices with L up to 512, which allowed for studies effectively
in the thermodynamic limit down to temperatures T/Q ⇡ 0.035 (L/LT � 1). Given that the
correlation length diverges faster than expected and the susceptibility approaches 0 slower than
expected, in Fig. S10 we test the forms

⇠T / T�1/(z⌫/⌫0)
(1 + aT !⇠

), (S46)
�T / T (d/z�1)⌫/⌫0

(1 + bT !�
), (S47)

using d = 2, z = 1, ⌫/⌫ 0
= 0.715 and positive correction exponents !⇠,!�. The correction

terms reflect expected non-asymptotic contributions which become unimportant when T ! 0

but still affect the behavior for the temperatures reached in the simulations. We have multiplied
⇠T by T in Fig. S10(a) and divided �T by T in Fig. S10(b), so that the results graphed versus
1/T should approach constants if the conventional forms ⇠T / 1/T and �T / T hold. The
data agree very well with the proposed anomalous forms, lending support to our hypothesis
that finite-size anomalies carry over also to T > 0 scaling with the same exponent ratio ⌫/⌫ 0

modifying the power laws.
In Ref. [30] the scaling anomaly in the correlation length was used as input in a simple pic-

ture of a deconfined gas of spinons, leading to quantitatively consistents relationships between
numerical results for ⇠T , �T , and the specific heat (the latter of which we do not analyze here be-
cause its anomalies are very difficult to detect). Within the spinon gas picture the susceptibility
was predicted to acquire a multiplicative logarithmic correction. The present scenario strongly
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Conjecture involving the two

length-scale exponents:

Unconventional T>0 critical scaling

Experimentally important revision of critical scaling



Conclusions

No signs of first-order transition in the J-Q model
Two length scales observed explicitly in the J-Q model

Simple two-length scaling hypothesis explains anomalous scaling 
of spin stiffness and susceptibility 
- conventional wisdoms revised

Standard T>0 critical scaling forms have to be reconsidered 
- existing J-Q results support unconventional forms with ν/ν’ 
- experimentally important

Finite-temperature 
- T>0 corresponds to thickness of quantum system in imaginary time 
- scaling laws from finite-size scaling forms

How general is this kind of two-length criticality?




