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Floquet non-Abelian topological insulator
and multifold bulk-edge correspondence

Tianyu Li 1 & Haiping Hu 1,2

Topological phases characterized by non-Abelian charges are beyond the
scope of the paradigmatic tenfold way and have gained increasing attention
recently. Here we investigate topological insulators withmultiple tangled gaps
in Floquet settings and identify uncharted Floquet non-Abelian topological
insulators without any static or Abelian analog. We demonstrate that the bulk-
edge correspondence is multifold and follows the multiplication rule of the
quaternion group Q8. The same quaternion charge corresponds to several
distinct edge-state configurations that are fully determined by phase-band
singularities of the time evolution. In the anomalous non-Abelian phase, edge
states appear in all bandgaps despite trivial quaternion charge. Furthermore,
we uncover an exotic swap effect—the emergence of interface modes with
swapped driving, which is a signature of the non-Abelian dynamics and absent
in Floquet Abelian systems. Our work, for the first time, presents Floquet
topological insulators characterized by non-Abelian charges and opens up
exciting possibilities for exploring the rich and uncharted territory of non-
equilibrium topological phases.

Thepast fewdecades havewitnessed a remarkable surge of research in
topological phases of matter1,2, culminating in the renowned Altland-
Zirnbauer tenfold way3–7. Based on the underlying symmetries and
spatial dimensions, gapped bulk Hamiltonians are characterized by
Abelian-type topological invariants (Z or Z2) with their own manifes-
tation of protected boundary states. Very recently, the notion of band
topology has been extended to tangled multi-gap scenarios8–15. For
instance, in the presence of space-time inversion (PT) symmetry, one-
dimensional (1D) insulators involving multiple bandgaps may carry
non-Abelian quaternion charges8 and host richer topological phases as
experimentally observed in transmission line networks16,17. Yet in its
infancy, the tangledmulti-gap topology plays a vital role in describing,
e.g., the disclination defects of nematic liquids18–22, the admissible
nodal lines23–27, and the reciprocal braiding of Dirac/Weyl/exceptional
points11,28–31.

Floquet engineering provides a powerful knob in manipulating
band structures32–41, offering unprecedented control over the topolo-
gical properties of materials and the exploration of non-equilibrium
phenomena. With a time-periodic Hamiltonian H(t) =H(t + T) (T is the

driving period), the stroboscopic dynamics is dictated by an effective
Floquet Hamiltonian. Notably, Floquet systems exhibit intriguing
topological features with no static analog arising from the replicas of
quasienergy bands, such as the emergence of anomalous chiral edge
modes42–45 despite the triviality of all bulk bands. Incorporating the
multi-gap scenario, this paper aims to address three fundamental
questions regarding Floquet multi-gap topology. (i) Does a Floquet
topological insulating phase characterized by non-Abelian charge
exist, and if so, how can it be implemented through periodic driving?
(ii) What novel bulk-edge correspondence does such a non-Abelian
phase possess, and how can it be described? (iii) Are there any unique
topological or dynamical phenomena associated with this phase?

Here we answer these questions affirmatively. Firstly, we propose
the realization of the simplest Floquet non-Abelian topological insu-
lator (FNATI) in a 1D three-band system with PT symmetry. Secondly,
the FNATI is characterized by a quaternion charge, which, on its own,
cannot predict the existence or the number of edge states. Moreover,
each quaternion charge corresponds to multiple edge-state config-
urations, demonstrating a multifold bulk-edge correspondence that
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obeys the multiplication rule of the quaternion group. The full topol-
ogy or edge-state configuration is completely captured by the phase-
band singularities of the time-evolution operator over one driving
period. Intriguingly, we identify an anomalous FNATI hosting edge
modes inside all bandgaps with a trivial bulk quaternion charge.
Thirdly, we reveal the emergence of interface modes with swapped
driving sequences as a genuine non-Abelian effect. It indicates the non-
commutative nature of the FNATI. This is in sharp contrast to Floquet
Abelian topological insulators, where such interface modes are absent
due to the same spectral structures regardless of the choice of time
frame. We emphasize that the intriguing properties of FNATI stem
from the presence of multiple tangled bandgaps. Our findings expand
the scope of Floquet topological insulators into the non-Abelian
regime and open up new avenues for investigating the vast and
unexplored territory of non-equilibrium topological phases.

Results
Multi-gap topology and driving protocol
Let us recap the static three-band topological insulator characterized by
the quaternion charge Q8

8. In the presence of PT symmetry, the Hamil-
tonian becomes real-valued in momentum space H(k) =H * (k) when
expressed on a suitable basis. Consequently, the eigenstates represent
three real vectors that are orthonormal to each other and span a coor-
dinate frame, as sketched in Fig. 1a. When simultaneously considering
both bandgaps, the configuration space of the Hamiltonian isM3 =

Oð3Þ
Oð1Þ3,

whereO(N) denotes the orthogonal group ofNdimension. TheOð1Þ=Z2

factor comes from the gauge freedom (± 1) for each real eigenstate.With
the variation ofmomentum k from−π to π, the eigenstate frame rotates
on the unit sphere. The mapping from the 1D Brillouin zone
k∈ [−π,π] = S1 toM3 is governedby the fundamental groupofM3, which
describes the frame rotation. This fundamental group is given by the
quaternion group π1(M3) =Q8

8. As a non-Abelian group, Q8 has eight
elements and five conjugacy classes {1, ± i, ± j, ± k,− 1} withmultiplication
rule i2 = j2 = k2 = ijk=− 1, ij=− ji, ik=− ki, jk=− kj. The quaternion charge
captures the multi-gap band topology and governs the number of
edge states in both bandgaps16. The trivial phase with charge q= 1 has no
edge states under open boundaries.

We consider a 1D lattice with three sites, denoted as A,B,C per
unit cell. Our Floquet driving is based on two ingredients, namely H1

and H2 as depicted in Fig. 1b. H1 (H2) contains only intracell (intercell)
couplings and respects PT symmetry,

H1 =
PL
n= 1

P
X ,Y

sXY c
y
X ,ncY ,n +h:c:,

H2 =
PL�1

n = 1

P
X ,Y

vXY c
y
X ,ncY ,n+ 1 +h:c::

8>>><
>>>:

ð1Þ

Here cyX ,n and cX,n represent the creation and annihilation operators at
site X (X =A,B,C) of the n-th unit cell, respectively. The lattice length
is L. The coupling parameters sXY and vXY used in this paper are listed
in the Methods. Without loss of generality, the driving period is set
as T = 1. We adopt a symmetric driving protocol: H(t) =H1 for t∈
mT + [0, T/4]∪ [3T/4, T] and H(t) =H2 for t∈mT + [T/4, 3T/4] (m 2 Z).
The dynamics of the system is governed by the time evolution
operator UðtÞ= T e�i

R t

0
HðτÞdτ , where T means time ordering. The

stroboscopic evolution of the system is described by the Floquet
operator,

UðTÞ= e�iH1T=4e�iH2T=2e�iH1T=4: ð2Þ

The effective Floquet HamiltonianHF is defined through UðTÞ= e�iHFT .
Due to the symmetric driving, the Floquet Hamiltonian respects PT
symmetry, i.e., HF ðkÞ=HF *ðkÞ. After the diagonalization:
HF un

�� �
= ϵn un

�� �
(n is the band index), we obtain the quasienergy ϵn and

eigenstates un

�� �
. The quasienergies are well-definedmodulo 2π/T, and

form the quasienergy bands. In the following, we set ϵn to be in the first
Brillouin zone (FBZ) of quasienergy ϵn∈ (−π/T,π/T].

Unlike the static three-band model with two bandgaps, the
Floquet system exhibits an additional bandgap that spans across the
FBZ boundary at ± π/T as shown in Fig. 1c, which arises from the
replica of Floquet spectra. As a consequence, the multi-gap topol-
ogy is greatly enriched in Floquet settings. The closing and
reopening of this bandgap lead to the emergence of extra edge
modes under open boundary conditions. For ease of reference, we
denote the band from bottom to top as the first, second, and third
bands, respectively, while bearing in mind their replicated nature.
The gap between them is then labeled as the first, second, and third
bandgap. In Fig. 1d, e, we present the quasienergy spectra and their
spatial profiles (of their associated eigenstates) with open bound-
aries. In both cases, the bulk Floquet Hamiltonian carries a qua-
ternion charge of q = j. In Fig. 1d, we observe one edge mode (for
each end of the lattice) at the first and second bandgaps, respec-
tively, which is similar to the static case16. While in Fig. 1e, there is
only a single edge mode within the third bandgap. Similar scenarios
apply to other cases as well. For instance, for charge i, edge states
can exist in both the first and third bandgaps or solely in the second
gap. Likewise, for charge k, the edge state may exist in both the
second and third bandgaps or only in the first gap.

Anomalous FNATI
Owning to the additional bandgap at the FBZ edge, the periodically
driven system can exhibit an intriguing phase with protected edge
modes even when the bulk quaternion invariant is trivial. This is in
stark contrastwith the static systems16, wherein the charge q = 1 system
does not possess any nontrivial edge states. Note that a similar
anomaly also happens on 2D driven lattice with protected chiral edge
states despite the triviality of bulk Chern bands42. We thus dub this
phase anomalous FNATI. In Fig. 2a, we plot the quasienergies and the
spatial profiles of their associated eigenstates for this anomalous
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Fig. 1 | Multi-gap topology in Floquet systems. a Sketch of the frame rotation of
eigenstates for topological insulator characterized by quaternion charge. The loci
of eigenstateon theunit spherewith varyingmomentum k from −π toπ aremarked
in red/green/blue for the first/second/third band, respectively. b Building blocks
for our Floquet driving. H1 (H2) contains only intracell (intercell) coupling terms.
c Labeling of the quasienergy bandgaps. The third gap straddles the FBZ edge at
± π

T. d, e Quasienergy spectra and spatial distributions (represented by color
shades) of their eigenstates for quaternion charge q = j with open boundaries. In
d, the edge states emerge at both the first and second gaps. In e the edge states
emerge at the third gap. The lattice length is L = 50. The parameters are listed in
“Methods” section.
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phase. We can clearly observe the existence of edge states (one for
each end of the lattice) in all three bandgaps.

In the anomalous phase, the bulk invariant of the Floquet
Hamiltonian, regardless of whether it is the quaternion charge or
Berry phase of Abelian type introduced for static systems16, is
unable to view the edge-state landscape. In fact, the emergence of
edge state has dynamical origin and the complete information of
the dynamical topology is encoded in the full-time evolution
operator. A unified analysis of the bulk-edge correspondence can be
achieved through the introduction of phase band and its associated
momentum-time singularities41,46–48. It should be noted that the
time-evolution operator U(t) is not always PT symmetric. To this
end, we adopt a PT symmetric operator ~Uðk,tÞ via a smooth defor-
mation of U(t) (see "Methods" section). ~Uðk,tÞ preserves the phase-
band structure (including its singularities) and satisfies
~Uðk,tÞ=Uðk,tÞ at t = 0, T. Formally, the operator ~Uðk,tÞ can be
expressed in terms of the spectral decomposition,

~Uðk,tÞ= P3
n= 1

e�iϕnðk,tÞ ψnðk,tÞ
�� �

ψnðk,tÞ
� ��, ð3Þ

where e�iϕnðk,tÞ denotes the eigenvalues of ~Uðk,tÞ and
ϕn(k, t)∈ (−π/T,π/T] forms the phase bands in the 2D momentum-
time space.

The phase bandmay touch and reopen with the variation of time,
leaving degenerate Dirac points in the bandgaps in the 2Dmomentum-
time space. At t = T, the phase bands become the quasienergy bands.
As shown in Fig. 2b, the phase bands touch once in each gap for the
anomalous phase. The presence of Dirac singularities in the phase
band leads to the emergence of edge states in the corresponding gap.
As the three gaps are tangled, each Dirac point can be assigned a
quaternion charge through the Wilson loop along an enclosing path
nearby (See Supplementary Material Appendix A). The quaternion
charge q of the Floquet Hamiltonian HF is related to the quaternion
charge of the phase-band singularities via

q=
Q
m
~qm: ð4Þ

Here m labels the Dirac point, and the multiplication is ordered such
that the concatenation of the small enclosing paths coincide with the
orientation of momentum integral−π→π. As a distinction, the charge
of the Dirac singularity is marked with a tilde. In the anomalous FNATI
depicted in Fig. 2b, the three singularities from right to left possess

quaternion charge ~q1 =
~k,~q2 = �~i, and ~q3 =~j, respectively [See the

inset]. It is evident that the relation 1 = ~k � ð�~iÞ �~j holds.

Multifold bulk-edge correspondence
The phase-band singularities and their non-Abelian nature offer a
straightforward interpretation of the bulk-edge correspondence in
FNATI. As indicated by Eq. (4), various patterns of edge states may
correspond to the samequaternion charge of the FloquetHamiltonian.
Such multifold bulk-edge correspondence follows the multiplication
rule of the quaternion group Q8. For example, in Fig. 1d,e, the two
phases with the same quaternion charge q = j have distinct edge-state
patterns. In their phase bands, there are two Dirac singularities with
charge ~k and ~i for the former, while there is a single singularity with
charge ~j for the latter. They satisfy the multiplication rule ~k �~i=~j.
Similar discussions can be applied to other cases. The multifold bulk-
edge correspondence can be deduced from two key observations.
Firstly, the edge statewithin eachbandgap is determined by the phase-
band closings that occur within that bandgap during time evolution.
Each gap closing results in a change of the mass term and the emer-
gence of an in-gap mode by Jackiw-Rebbi’s argument49. With multiple
bandgaps present, the edge-state patterns are determined by con-
sidering the phase-band singularities within each bandgap. Secondly,
the phase-band singularities relate to the bulk quaternion charge via
Eq. (4). It then becomes evident that the edge-state pattern is linked to
the quaternion charge, and the bulk-edge correspondence showcases
a multifold nature that adheres to the multiplication rule.

In Fig. 3, we present a comprehensive list of bandgap closings
and their corresponding edge-state patterns (per edge) for all
quaternion charges. Notably, we observe similar bandgap closings
and edge-state configurations for quaternion charges that belong
to the same conjugacy class, such as ± i. This is due to the anti-
commutating relations of quaternion charge. For example, the
existence of a type ~j and type ~k singularity in the phase band
(regardless of their ordering) results in two edge states (located at
the first and third bandgap). Switching them yields conjugate
quaternion charges: ~j � ~k = � ~k �~j. In addition to the patterns that
appeared in the static case (the fourth column)16, Floquet systems
can exhibit unique edge-state patterns (the fifth column) because
of the additional phase-band touchings at the FBZ edge. It should
be noted that for a particular gap, multiple touchings can exist
(See Supplementary Material Appendix B), such as i= ~k � ð ~�kÞ �~i,
which has two Dirac points in the first bandgap. However, such
cases can be reduced to the simpler cases listed in Fig. 3 by elim-
inating two Dirac points of the same gap pairwise, resulting in a
factor ± 1. Furthermore, in the case of charge q = − 1, two fickle
edge states16 (with an unspecified bandgap) may appear according
to �1 =~i

2
=~j

2
= ~k

2
, or three separate edge states may appear

according to �1 =~i �~j � ~k. We note that the multifold bulk-edge
correspondence can be extended directly to the domain-wall
problem. For two Floquet systems with charge qL and qR, the pat-
terns of topological domain-wall states between them are dictated
by the quotient qL/qR. Different from the static case, the bandgap
closings across the domain wall are fully captured by the phase-
band singularities, yielding a multifold bulk-domain-wall corre-
spondence (See Supplementary Material Appendix D, E). Last, our
numerical analysis indicates that the edge/domain-wall states are
robust against small disorders. In the presence of domain-wall
decorations, it is possible for additional trivial bound states to
emerge. However, the non-trivial domain states, governed by the
non-Abelian topology, remain unaffected (See Supplementary
Material Appendix F).

Interface modes induced by swapped driving
Besides the multifold bulk-edge correspondence, here we uncover a
counter-intuitive phenomenon of FNATI as a manifestation of the
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Fig. 2 | FNATI with anomalous edge states. aQuasienergy spectra and the spatial
distributions of their eigenstates with open boundaries. The bulk quaternion
charge is q = 1. The lattice length is L = 50. b Phase bands of ~Uðk,tÞ in the 2D
momentum-time space. TheDirac-point singularities aremarkedwith reddots. The
inset: locations of the Dirac points with quaternion charges~j,�~i, and ~k in the (k, t)-
space. P is the base point for the encirclingpaths. Thequaternion charge of thebulk
Floquet Hamiltonian and Dirac points are related via 1 = ~k � ð�~iÞ �~j. The parameters
are listed in “Methods” section.
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Floquet non-Abelian topology. As illustrated in Fig. 4a, we consider a
system with two sides featuring swapped (mismatched) driving
sequences. Within one full period, the Hamiltonians on the left and
right sides are given byH1→H2→H1 andH2→H1→H2, respectively. The
bulk Floquet operators for these two sides, denoted as UL and UR, are
related via a similarity transformation UL = V−1URV where
V = e�iH2T=4e�iH1T=4 accounts for the time shift. This shift does not alter
the quasienergy spectra irrespective of the boundary conditions. In
Floquet Abelian topological phases39,40, the bulk topological invariant
is defined for each individual quasienergy bandgap (or branch-cut).
The two subsystems should have the same topological invariant for
each bandgap to match with the edge states, and no stable interface
modes are expected to exist. However, in our non-Abelian systemwith
multiple intertwined gaps, this is not always true. In Fig. 4b, weplot the
quasienergy spectra in the presence of an interface of swapped driving
using the same parameters as Fig. 2. We can clearly observe a pair of
domain-wall states (located near ± π

T) in the third gap. The emergence
of the interface modes signifies the non-commutativity of the two
driving sequences and it is a genuine non-Abelian effect of the Floquet
dynamics. We have also verified the appearance of domain-wall states
for other cases with different quaternion charges.

To understand this fascinating effect, we define the bulk eigen-
states of UL and UR on two sides as SL = ðju1Li,ju2Li,ju3LiÞ and
SR = ðju1Ri,ju2Ri,ju3RiÞ. With PT symmetry, they are related by an SO(3)
transformation SL =OSR, with O= SLS

T
R (T denotes transposition). It is

important to note thatOmay alter thequaternion charge. Inparticular,
when O corresponds to the non-identity element in the fundamental
group π1ðSOð3ÞÞ=Z2, the bulk quaternion charge for the two sides
satisfy qL = − qR. In fact, according to the exact sequence of homotopy
groups50:

� � � ! π1ðSOð3ÞÞ!
j1
π1

SOð3Þ
D2

� �
!∂1 π0ðD2Þi00, ð5Þ

the kernel of∂1-mapping is {1, − 1} inπ1ðSOð3ÞD2
Þ=Q8. Thus j1maps thenon-

identity element of Z2 to − 1 in Q8. For our case, O traces a nontrivial
path in SO(3) as the momentum k varies from −π to π as depicted in
Fig. 4c. UL has a quaternion charge of qL = 1, while UR has qR = − 1,
indicating the emergence of domain-wall states. Alternatively, one
can scrutinize this effect through the phase-band singularities (See
Supplementary Material Appendix C). With time variation, the
phase band undergoes crossings with charge ~k,�~i,~j and �~k,~i,�~j
for UL and UR, respectively. They satisfy Eq. (4), qL = 1 =

~k � ð�~iÞ �~j
and qR = � 1 = ð�~kÞ �~i � ð�~jÞ.

Discussion
In summary, our exploration of the FNATI represents a significant
advancement in the field of out-of-equilibrium topological phases. We
have demonstrated the implementation of FNATI through step-like
driving and fully characterized its topological properties via phase-
band singularities. Our analysis revealed a multifold bulk-edge corre-
spondence, governed by the multiplication rule of the quaternion
groupQ8. We have identified an anomalous phase that possesses edge
modes within all bandgaps despite a trivial bulk, which lacks a static
analog. Furthermore, we have uncovered a novel interface effect
resulting from swapped driving that serves as a key signature of the
non-Abelian topology.

Our findings offer novel insights into Floquet topological
phases with multiple intertwined bandgaps. Our results can be
extended to higher-band cases, such as a four-band topological
insulator characterized by the non-Abelian group Q16

17. In higher
dimensions, the phase-band singularities may extend to nodal
lines, and it would be intriguing to explore their interwinding in
momentum-time space and the associated non-Abelian effects.
From a wider perspective, the multi-gap topology belongs to the
fragile topology and relies on the partition of energy bands10. A
different partition (2 + 1) yields a different flag manifold RP2 and is
relevant for the Floquet Euler phase14. Other tantalizing extensions
include the 3D nodal-line metals8 characterized by non-Abelian

251 51

0

0.4

0.20

a b

x
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zc

Fig. 4 | Interface modes with swapped driving as a manifestation of the non-
Abelian topology. a The Floquet setting: two subsystems connected by an inter-
face have swappeddriving sequences. bQuasienergy spectra and spatial profiles of
their eigenstateswith openboundaries at the two ends. A pair of domain-wall states
emerge at the third bandgap. The lattice length is L = 51, and the interface is located
at n = 26. Other parameters are the same as Fig. 2. c Trajectory of the transforma-
tionO (blue curve) in the parameter space of SO(3) (represented by a solid ball). As
k varies from −π to π,O follows a closed nontrivial loop that connects a pair of
antipodal points in SO(3). For comparison, the black curve represents a trivial loop
in SO(3).

Quaternion 

charge
Phase-band crossings Edge states

1

{± }

{± }

{± }

-1        

Fig. 3 | Multifold bulk-edge correspondence for FNATI. The first column lists the
quaternion charge for the FloquetHamiltonian, and the five conjugacy classes ofQ8

correspond to different rows. The second and third columns sketch thephase band
structure with singularities depicted by red dots. The cases with band crossing at
the FBZ edge are listed in the third column. The fourth/fifth columns sketches the
edge-state patterns corresponding to the phase bands in the second/third column.
The black dots represent edge states. Empty circlesmark the fickle edge states. The
configurations unique to Floquet systems are listed in fifth column. The list applies
equally to the domain-wall problem.
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frame charges and non-Hermitian phases with non-Abelian band
braidings51–53 by relaxing the PT symmetry to allow for a complex
flag manifold. A natural issue is how these non-Abelian features
interplay with Floquet driving. Besides the step-like driving uti-
lized for illustration purposes, smooth Floquet driving should also
be suitable for implementing FNATI. With the high feasibility of
Floquet engineering32–41 and the ability to manipulate tight-
binding models in various platforms, such as ultracold
atoms45,54–57, photonic or acoustic materials43,44,58,59, we anticipate
that the uncharted FNATI and non-Abelian effect will be observed
in near-future experiments.

Methods
Calculation of quaternion charge
The quaternion charge q∈Q8 characterizes the rotations of the
eigenstate frameas themomentum k varies from−π toπ. In the caseof
the Dirac singularity in the phase band, the quaternion charge
describes the frame rotation along the enclosing path. According to
ref. 8, the generalized Wilson operator can be used to obtain the
quaternion charge. Formally, the Wilson loop along a closed path Γ is
defined as follows:

W Γ =Pe
H

Γ
AallðkÞ�dk : ð6Þ

Here, ½AallðkÞ�mn = humðkÞj∂k junðkÞi represents the Berry-Wilczek-Zee
connection. The band indices m and n take values from 1 to 3, and
unðkÞ
�� �

is the eigenstate of the Floquet Hamiltonian HF. For the Dirac-
point case, we use the phase band instead. Aall(k) is anti-symmetric and
can be decomposed into the soð3Þ Lie-algebra basis:

AallðkÞ=
P

i = 1,2,3
βiLi, ð7Þ

where ðLiÞjk = � ϵijk and ϵijk is the anti-symmetric tensor. We then lift
Aall to the spinð3Þ-valued 1-form8 by replacing Liwith ti, where ti = � i

2 σi

and σi represents the Pauli matrix. This gives us:

AallðkÞ=
P

i= 1,2,3
βiti: ð8Þ

Finally, the non-Abelian charge is defined by:

q=Pe
H

Γ
AallðkÞ�dk : ð9Þ

The elements of the quaternion group are represented by
1→ σ0, i→ − iσx, j→ − iσy, and k→ − iσz.

Smooth deformation of time evolution
To define the quaternion charge of the Dirac singularity, real wave
functions of the phase bands are required. To this end, we smoothly
deformU(k, t) into ~Uðk,tÞ such that ~U

*ðk,tÞ~Uðk,tÞ= 1 for all t∈ [0, 1] (we
set T = 1 for convenience). The time evolution operator for our driving
protocol is

U =
e�iH1t , t 2 ½0,1=4�,
e�iH2ðt�1=4Þe�iH1=4, t 2 ½1=4,3=4�,
e�iH1ðt�3=4Þe�iH2=2e�iH1=4, t 2 ½3=4,1�:

8><
>: ð10Þ

We can define the PT symmetric operator ~Uðk,tÞ as

~U =

e�iH1t , t 2 ½0,1=4�,
e�iH1=8e�iH2ðt�1=4Þe�iH1=8, t 2 ½1=4,3=4�,
e�

i
2ðt�1

2ÞH1e�iH2=2e�
i
2ðt�1

2ÞH1 , t 2 ½3=4,1�:

8><
>: ð11Þ

To visualize the smoothness of the deformation, let us consider the
continuous interpolation between them:

Uðs,k,tÞ=

e�iH1t , t 2 ½0,1=4�,
e�iH1

s
8e�iH2ðt�1=4Þe�iH1ð1�s

2Þ14, t 2 ½1=4,3=4�,
e�i½ð1�s

2Þt + 2s�3
4 �H1e�iH2=2e�iðs2t + 1�2s

4 ÞH1 , t 2 ½3=4,1�,

8>>>><
>>>>:

ð12Þ

such that Uðs =0,k,tÞ=Uðk,tÞ and Uðs = 1,k,tÞ= ~Uðk,tÞ. During the
deformation from s =0 to s = 1, the phase bands and the Dirac singu-
larities are unchanged.

Coefficients of the tight binding model
The coefficients used in the paper are listed in Table 1. In all the cases,
we take sAA = sBB= sCC = 0, sAB = sBA = r, sBC = sCB= s, sCA = sAC= t and
vAB= vBA = iu, vBC = vCB= iv, vCA= vAC = iw, where r, s, t, u, v and w are all
real numbers.

Data availability
All data is available upon reasonable request.

Code availability
The code that supports the findings of this study is available at https://
doi.org/10.5281/zenodo.8294074.
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