
Fundamental Sensitivity Limits for Non-Hermitian Quantum Sensors

Wenkui Ding ,1,2 Xiaoguang Wang,2,* and Shu Chen1,3,†
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

2Department of Physics, Zhejiang Sci-Tech University, 310018 Zhejiang, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 15 June 2023; accepted 2 October 2023; published 20 October 2023)

Considering non-Hermitian systems implemented by utilizing enlarged quantum systems, we determine
the fundamental limits for the sensitivity of non-Hermitian sensors from the perspective of quantum
information. We prove that non-Hermitian sensors do not outperform their Hermitian counterparts (directly
couple to the parameter) in the performance of sensitivity, due to the invariance of the quantum information
about the parameter. By scrutinizing two concrete non-Hermitian sensing proposals, which are
implemented using full quantum systems, we demonstrate that the sensitivity of these sensors is in
agreement with our predictions. Our theory offers a comprehensive and model-independent framework for
understanding the fundamental limits of non-Hermitian quantum sensors and builds the bridge over the gap
between non-Hermitian physics and quantum metrology.
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Introduction.—Parallel with the rapid development in
quantum technology, quantum metrology [1–4] and quan-
tum sensing [5,6] are becoming a focus in quantum science.
Quantum sensors exploit quantum coherence or quantum
correlations to detect weak or nanoscale signals and exhibit
great advantages in accuracy, repeatability, and precision.
Recently, a number of sensing proposals utilizing novel
properties of non-Hermitian physics [7–9] have been
proposed and experimentally demonstrated. For example,
non-Hermitian lattice systems with skin effect [10,11] or
nonreciprocity [12] have been suggested to realize
enhanced sensing. Specifically, the divergence of the
susceptibility near the exceptional point (EP) is exploited
to realize enhanced sensing with arbitrary precision [13–
16] and it has been demonstrated using various classical
(quasiclassical) physical systems [17–21] or quantum
systems [22,23]. While these early experiments claimed
enhancements compared to conventional Hermitian sen-
sors, subsequent theoretical work has cast doubt on these
results [24–28], suggesting that the reported enhancements
may not have fully taken into account the effects of noise.
After taking into account the noise, some theoretical works
show the enhancement in sensitivity provided by non-
Hermitian sensors may disappear [24,27]. However, other
theoretical works have claimed that the enhancement can
persist even in the presence of noise [25,26]. While some
recent experiments have demonstrated enhanced sensitivity
despite the presence of noise [21,22], others have shown no
such enhancement [23]. Currently, the fundamental limi-
tations imposed by noise on non-Hermitian sensors are still
a topic of debate [29], and a definitive conclusion on
whether the non-Hermitian physics is superior for sensing
is still elusive.

In sensing schemes that rely on quantum systems,
quantum noise always arises during the projective meas-
urement of the parameter-dependent quantum state [30].
This noise originates from quantum mechanics and cannot
be eliminated, leading to the fundamental sensitivity limit.
Quantum metrology focuses on how to beat the standard
quantum limit by employing quantum correlations, like
entanglement or squeezing [2]. While non-Hermitian sys-
tems can serve as an effective description of open system
dynamics in certain situations [8,31], the decoherence and
dissipation in open systems are detrimental to the useful
quantum features required for metrology [32–36]. There-
fore, the sensitivity enhancement from non-Hermitian sen-
sors, which can be embedded in open systems, is quite
counterintuitive. Various theoretical works have been de-
voted to analyze the effect from the noise [24–28], however,
these investigations usually require modeling the effect of
noise and calculating the dynamics using tools such as the
quantum Langevin equation, for specific sensing schemes
and probe states. Here, we provide a general conclusion on
the fundamental sensitivity limit from the perspective of
quantum information [37], without the requirement to solve
intricate nonunitary quantum dynamics and independent of
specific noise forms, probe states, and measurement
regimes. We unambiguously prove that the non-Hermitian
quantum sensors do not surpass the ultimate sensitivity of
their Hermitian counterparts and cannot achieve arbitrary
precision in realistic experimental settings with finite
quantum resources.
Sensitivity bound for unitary parameter encoding.—

Quantum metrology or quantum parameter estimation is
to estimate the parameter λ from the parameter-dependent
quantum state ρλ. One crucial step is to make measurements
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on the quantum state. The measurement can be described
by a Hermitian operator Π, and the probability of obtaining
the measurement outcome ξ, conditioned on the para-
meter λ, is PðξjλÞ ¼ TrðΠρλÞ. We can evaluate the classical
Fisher information Iλ corresponding to this specific meas-
urement as I λ ¼

P
ξ PðξjλÞ

�
∂ lnPðξjλÞ=∂λ�2, which re-

flects the amount of information about the parameter
contained in the distribution of measurement outcomes.
Meanwhile, the estimation uncertainty is given by

δ2λ ¼
Dn�

λest=ðdhλesti=dλÞ
�
− λ

o
2
E
, where λest is the esti-

mated value when the number of probes (N) and the
number of trials (ν) are finite, while λ is the true value of the
parameter. For the unbiased estimator, we have
dhλesti=dλ ¼ 1. In fact, the classical Fisher information
bounds the estimation uncertainty achievable in this spe-
cific measurement, which fulfills the so-called Cramér-Rao
bound: δλ ≥ 1=

ffiffiffiffiffiffiffiffi
νIλ

p
, where ν is the number of repeti-

tions or trials. This bound can be attained asymptoti-
cally as ν → ∞. When it is optimized over all possible
measurements, we can find the maximal value of the
classical Fisher information, known as the quantum
Fisher information (QFI) [38], Iλ ≤ Fλ. Accordingly,
the ultimate precision of parameter estimation for a speci-
fic parameter-dependent quantum state can be determined
using the quantum Cramér-Rao bound [39], δλ ≥ 1=

ffiffiffiffiffiffiffiffi
νFλ

p
.

The QFI [40] can be determined as Fλ ¼ Tr½ρλL2�, whereL
is the symmetric logarithmic derivative defined by
∂ρλ=∂λ ¼ ðLρλ þ ρλLÞ=2.
Usually, the parameter-dependent quantum state ρλ is

obtained through time evolution governed by the param-
eter-dependent Hamiltonian ĤλðtÞ. To be more specific,
with the parameter-independent initial state (probe state)
ρ0, the parameter encoding process can be described as
ρλðtÞ ¼ Uλð0 → tÞρ0U†

λð0 → tÞ, where the unitary time

evolution operator Uλð0 → tÞ ¼ T e−i
R

t

0
ĤλðsÞds, with T

being the time-ordering operator. In the case where
the initial state is a pure state, ρð0Þ ¼ jΨ0ihΨ0j, the
QFI can be calculated as FλðtÞ ¼ 4ðhΨ0jh2λðtÞjΨ0i−
hΨ0jhλðtÞjΨ0i2Þ≡ 4Var½hλðtÞ�jjΨ0i, where the Hermitian

operator hλðtÞ≡ iU†
λð0 → tÞð∂=∂λÞUλð0 → tÞ is called

the transformed local generator [41,42]. We have defined
Var½Â�jjΨi as the variance of the Hermitian operator Â with

respect to jΨi. It satisfies Var½Â�jjΨi ≤ kÂk2=4 for arbitrary
jΨi [43], where the seminorm is defined as kÂk≡MA−mA,
with MA (mA) being the maximum (minimum) eigenvalue

of Â. Then it follows FλðtÞ ≤ khλðtÞk2 ≡ FðcÞ
λ ðtÞ, where

FðcÞ
λ ðtÞ is defined as the channel QFI, corresponding to the

maximum QFI achievable by optimizing over all possible
probe states.
The triangle inequality for the seminorm of Hermitian

operators [43] states that kÂþ B̂k ≤ kÂk þ kB̂k. Using
the definition of hλ and the Schrödinger equation

i∂Uλ=∂t ¼ HλUλ, we can obtain ð∂hλ=∂tÞ ¼
U†

λð0 → tÞ½∂HλðtÞ=∂λ�Uλð0 → tÞ. Thus, the transformed
local generator can be explicitly represented as
hλðtÞ ¼

R
t
0 U

†
λð0 → sÞ½∂HλðsÞ=∂λ�Uλð0 → sÞds. By apply-

ing the triangle inequality, we obtain khλðtÞk ≤R
t
0

��U†
λð0 → sÞ½∂HλðsÞ=∂λ�Uλð0 → sÞ��ds ¼ R

t
0

��½∂HλðsÞ=
∂λ���ds, where we have used the fact that unitary trans-
formations do not change the spectrum of an operator.
Therefore, the upper bound of the channel QFI can be
obtained as follows [44]:

FðcÞ
λ ðtÞ ≤

�Z
t

0

���� ∂HλðsÞ
∂λ

����ds
�
2

: ð1Þ

Because of the convexity of QFI, the optimal probe state is
always a pure state [45]. Therefore, this bound is naturally
applicable for mixed probe states. Similar relations [45,46]
have been obtained using different methods and have been
employed to discuss unitary parameter encoding processes
governed by Hermitian time-dependent Hamiltonians.
Furthermore, by utilizing the quantum Cramér-Rao bound,
we obtain the lower bound for the estimation uncertainty as
follows [47]:

δλ ≥
1ffiffiffi

ν
p R

t
0

��� ∂HλðsÞ
∂λ

���ds : ð2Þ

Here, we realize that this relation is actually not limited
to unitary parameter encoding processes. Instead, this
bound can be applied to investigate nonunitary parameter
encoding processes, particularly in the context of open
quantum systems or dynamics governed by non-Hermitian
Hamiltonians.
In this Letter, we proceed further to investigate the bound

on the change rate of the QFI. By the definition of QFI, we
obtain that ð∂Fλ=∂tÞ¼8Cov½ð∂hλ=∂tÞ;hλ�

��
jΨ0i, where the co-

variance is defined as Cov½Â; B̂���jΨi ≡ 1
2
hΨjÂ B̂þB̂ Â jΨi−

hΨjÂjΨihΨjB̂jΨi. The covariance inequality deduced from
the Cauchy-Schwarz inequality states that

��Cov½Â; B̂��� ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðÂÞVarðB̂Þ

q
. Applying this inequality, we find

����Cov
�
∂hλ
∂t

; hλðtÞ
�����

jΨ0i

���� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
U†

λ

∂Hλ

∂λ
Uλ

�����
jΨ0i

s
F1=2
λ ðtÞ
2

≤
�� ∂Hλ

∂λ

��
2

F1=2
λ ðtÞ
2

: ð3Þ

After some algebra [48], we prove the following inequality:

���� ∂F
1=2
λ ðtÞ
∂t

���� ≤
���� ∂HλðtÞ

∂λ

����: ð4Þ
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Namely, the change rate of the square root of QFI is only
bounded by the spectral width of the derivative of the
Hamiltonian with respect to the parameter. j∂F1=2

λ ðtÞ=∂tj
measures how fast the quantum information about the
parameter flows into or out of the quantum state. It indicates
that the quantum parameter encoding process cannot be
accelerated by adding auxiliary parameter-independent
Hamiltonian extensions.
Open system and non-Hermitian quantum sensing.—In

many situations, such as dynamics in open quantum systems
or systems governed by non-Hermitian Hamiltonians, the
dynamical process used to encode the parameter may be
nonunitary. However, it is often possible to map these
nonunitary processes to equivalent unitary dynamics in an
enlarged Hilbert space, by introducing extra degrees of
freedom that correspond to the environment [32]. We now
make this statement more rigorous for nonunitary sensing
schemes. Prior to applying the perturbation that incorpo-
rates the parameter to be estimated, the dynamical process
in the open quantum system or non-Hermitian system,
RS∶ ρSð0Þ → ρSðtÞ, can bemapped from a unitary evolution
in an enlarged system, MðUS;EÞ → RS. This unitary time
evolution operator for the combined system corresponds to a
Hermitian Hamiltonian, US;E → H̃tot. This Hamiltonian,
H̃tot ¼ HSðtÞ þHEðtÞ þHSEðtÞ, generally contains terms
that describe the systemHSðtÞ, the environmentHEðtÞ, and
the system-environment interaction HSEðtÞ. Subsequently,
we introduce the perturbation that incorporates the param-
eter dependence. In most scenarios, including the examples
discussed in this work and various non-Hermitian sensing
protocols, the parameter of interest directly couples to the
degrees of freedomof the system and the perturbation can be
represented by a Hermitian Hamiltonian H1ðλ; tÞ. As a
result, the overall parameter encoding process, correspond-
ing to the dynamical evolution in the open system or non-
Hermitian system, can be mapped to a unitary dynamics
governed by a Hermitian Hamiltonian HλðtÞ ¼ H̃totþ
H1ðλ; tÞ. By mapping the dynamics to an enlarged system,
we circumvent the analysis of intricate nonunitary parameter
encoding processes. By resorting to the corresponding
unitary evolution in the enlarged system, we can straight-
forwardly apply the ultimate sensitivity bound in Eq. (2) and
the QFI rate bound in Eq. (4).
Since the estimation parameter only associates with the

degree of freedom of the system, we have ∂Hλ=∂λ ¼
∂H1=∂λ. Thus, the bounds in Eqs. (2) and (4) reveal an
intriguing insight: the ultimate sensitivity cannot be
improved by coupling the system to the environment or
by introducing auxiliary Hamiltonians. This is because
these additional factors do not increase the amount of
information about the parameter or the rate of information
encoding. Correspondingly, the non-Hermitian sensor will
not outperform its Hermitian counterpart in terms of
ultimate sensitivity. We now substantiate this conclusion
by analyzing some concrete examples.

Example I: Single-qubit pseudo-Hermitian sensor.—A
single-qubit pesudo-Hermitian [49] Hamiltonian, descri-
bed by

Ĥs ¼ Eλ

	
0 δ−1λ
δλ 0



; ð5Þ

is employed to realize enhanced quantum sensing in
Ref. [50], where Eλ and δλ depend on the parameter λ that
is being estimated. According to the Naimark dilation
theory [51,52], a dilated two-qubit system with a properly
prepared initial state can be used to simulate the dynamics
of this pseudo-Hermitian Hamiltonian, conditioned on the
postselection measurement of the ancilla qubit [53]. The
Hermitian Hamiltonian of this dilated two-qubit system is

Ĥtot ¼ bÎðaÞ ⊗ σ̂ðsÞx − cσ̂ðaÞy ⊗ σ̂ðsÞy þ λÎðaÞ ⊗ σ̂ðsÞx ; ð6Þ

where σ̂ðsÞα¼x;y;z (σ̂ðaÞα¼x;y;z) represents the Pauli operators
of the system qubit (ancilla qubit). The coefficients b ¼
4ωεð1þ εÞ=ð1þ 2εÞ and c ¼ 2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1þ εÞp

=ð1þ 2εÞ,
where ε and ω describe the qubit. This specific dilated
Hamiltonian can be mapped to Ĥs, with Eλ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ λÞ2 þ c2

p
and δλ ¼ ðλþ 2εωÞ=Eλ. The time evolu-

tion of the quantum state governed by Ĥs is jψis ¼
e−iĤstj0is ¼ cosðEλtÞj0is − iδλ sinðEλtÞj1is. Thus the nor-
malized population in j0is is Sðλ; tÞ ¼ 1=½1þ
δ2λ tan

2 ðEλtÞ�. In Fig. 1(a), we plot the susceptibility
χsðλÞ≡ ∂S=∂λ as a function of λ for a fixed evolution
time t ¼ τ≡ π=½4ω ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εð1þ εÞp �. The result indicates that
the maximal value of the susceptibility diverges as ε → 0,
which corresponds to the eigenstate coalescence. Based on
this feature, the authors in Ref. [50] proposed the pseudo-
Hermitian enhanced quantum sensing scheme.
On the other hand, for the dilated two-qubit system,

the probe state should be prepared as jΨ0i ¼� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð1þ εÞ=ð1þ 2εÞ�p j0ia þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ε=ð1þ 2εÞ�p j1ia

�
⊗ j0is in

(a) (b)

FIG. 1. (a) Susceptibility of the normalized population with
respect to λ for different values of ε. It indicates that the maximal
susceptibility diverges as ε approaches zero. (b) Sensitivity
corresponding to the measurement of the population in the state
j0ia ⊗ j0is. It indicates that the sensitivity at the optimal
measurement point (corresponding to the maximal susceptibility)
does not diverge when ε approaches zero. The blue lines represent
the sensitivity bound of the Hermitian counterpart.

PHYSICAL REVIEW LETTERS 131, 160801 (2023)

160801-3



order to correctly simulate the non-Hermitian dynamics.
The normalized population Sðλ; tÞ actually corresponds to
the probability that the system qubit is in state j0is,
conditioned on the ancilla qubit being in state j0ia.
Equivalently, by calculating the dynamics of the total
system jΨðτÞi ¼ e−iĤtotτjΨ0i, we can directly evaluate
the probability in state j0ia ⊗ j0is as

P1¼
1þε

1þ2ε
cos2

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þ8εð1þεÞλω

1þ2ε
þ4εð1þεÞω2

r �
: ð7Þ

Because of the quantum projection noise, there is uncer-
tainty in the determination of P1. This uncertainty origi-
nates from the quantum projective measurement and
follows a binomial distribution. The variance of the
estimated probability is Var½P̂1� ¼ P1ð1 − P1Þ=ν, where
ν is the number of trials (repetitions) [48]. Using the error
propagation formula, we can evaluate the estimation
uncertainty for this specific sensing scheme as δλ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½P̂1�

q
=j∂P1=∂λj. We plot the sensitivity in Fig. 1(b),

which shows no divergence at the corresponding divergent
positions of χsðλÞ in Fig. 1(a). This absence of divergence
in the sensitivity is attributed to the fact that the divergence
in χsðλÞwhen ε → 0 is accompanied by a vanishing success
probability in the postselection measurement. Namely,
most experimental trails fail to provide useful information
on the parameter. As a comparison, the counterpart

Hermitian sensor simply employs V̂ ¼ λÎðaÞ ⊗ σ̂ðsÞx as
the parameter encoding generator. The sensitivity bound
in Eq. (2) indicates δλ ≥ ð1= ffiffiffi

ν
p

τkσ̂xkÞ ¼ ð1=2 ffiffiffi
ν

p
τÞ. We

plot this ultimate sensitivity bound in Fig. 1(b) as the blue
lines, indicating that the non-Hermitian sensor does not
outperform its Hermitian counterpart. Furthermore, the rate
of dynamic QFI can be calculated exactly [48] as follows:

∂F1=2
λ ðtÞ
∂t

¼ 2
cos2θ þ sin2θ sin ð2ΩtÞ

2Ωtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ sin2θ sin2ðΩtÞ

ðΩtÞ2
q ; ð8Þ

where we define ðbþ λÞ=Ω ¼ cos θ and c=Ω ¼ sin θ. It
follows that −2 ≤ ½∂F1=2

λ ðtÞ=∂t� ≤ 2, which verifies our
theory in Eq. (4).
Example II: EP based sensor using a single trapped

ion.—We now consider the sensor based on exceptional
point realized in a dissipative single-qubit open system in
Ref. [54]. The sensing mechanism relies on an effective
periodically driven [55] PT -symmetric non-Hermitian
Hamiltonian given by

ĤPT ¼ J½1þ cosðωtÞ�σ̂x þ iΓσ̂z; ð9Þ

where σ̂x;z are the Pauli operators, J is the coupling
strength, ω is the modulation frequency of the coupling
strength, and Γ is the dissipation rate. Actually, the

practically implemented Hamiltonian in the experiment
is Ĥ0

PT ¼ ĤPT − iΓÎ, which is a passive PT -symmetric
system with Î being the identity operator. The perturbation
applied to the system is Ĥδ ¼ ðδ=2Þ cosðωδtÞðÎ − σ̂zÞ,
where δ and ωδ are the amplitude and frequency of the
perturbation field, respectively, while ωδ is the parameter to
be estimated. After the system evolves from specific initial
states for a duration of T ¼ 2π=ω, we can determine the
response energy Eres via PJðTÞ − PΓðTÞ ¼ sin2ðEresTÞ.
Here, the measurable quantities are defined as PJðTÞ ¼
jh↑jUðTÞj↓ij2 and PΓðTÞ¼

��½ðh↑j−h↓jÞ= ffiffiffi
2

p �UðTÞ½ðj↑iþ
j↓iÞ= ffiffiffi

2
p ���2, with UðTÞ ¼ T e−i

R
T

0
½ĤPT ðtÞþĤδðtÞ�dt. The abso-

lute value of the response energy Eres as a function of ωδ is
plotted in Fig. 2(a) [56]. As it is shown, the response energy
exhibits sharp dips near the EP [57]. This characteristic
feature has motivated the authors in Ref. [54] to suggest the
sensing application, since a minor change in ωδ will result
in a significant variation in the response energy. Indeed, in
Fig. 2(c), we present the susceptibility j∂Eres=∂ωδj as a
function of ωδ and it exhibits a divergence near the EP.
However, the study in Ref. [54] has neglected effects

from the quantum noise. Here, since PJ and PΓ actually
correspond to projective measurements on the spin state,
the quantum projection noise will result in uncertainties in
their determination. The variance of the estimated P̂J and

(a) (b)

(c) (d)

FIG. 2. (a) Response energy shows sharp dips near the EP for
the periodically driven non-Hermitian system. The dashed line
indicates the position of the first EP. In (b)–(d), the range of ω
corresponds to the zoom-ins of the left side of the first EP.
(b) Variance of the response energy near the EP diverges.
(c) Susceptibility of the response energy exhibits divergence
near the EP. (d) The sensitivity, which is inversely proportional to
the signal-to-noise ratio, shows no divergence. The dashed line
represents the theoretical sensitivity bound of the Hermitian
counterpart.
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P̂Γ can be expressed as Var½P̂i� ¼ PiðC0 − PiÞ=ν; with
i ¼ J;Γ, where ν is the number of trials and C0 ≡ e2ΓT

[58]. To avoid the complication of dealing with complex
response energies, we focus on the region near the EP
where PJ − PΓ > 0. Applying the theory of uncertainty
propagation, we obtain the uncertainty in the estimation of
the response energy as Var½Êres�¼ ð1=4νT2Þf½C0ðPJþ
PΓÞ−ðP2

JþP2
ΓÞ�=½ðPJ−PΓÞð1−PJþPΓÞ�g, where we

have used the fact that measurements on PJ and PΓ are
independent. We plot the variance of the measured response
energy in Fig. 2(b) as a function of ωδ, and it shows that the
uncertainty in the determination of Eres also diverges when
ωδ approaches the EP. The overall sensitivity can be

evaluated as δωδ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Êres�

q
=j∂Eres=∂ωδj, and we plot

it in Fig. 2(d). It shows that the divergence of the
susceptibility is completely compensated by the divergence
of the uncertainty, resulting in an overall sensitivity without
divergence when approaching the EP. On the other hand,
the Hermitian counterpart simply uses Ĥδ as the parameter
encoding generator. According to Eq. (2), the ultimate
sensitivity bound is given by δωδ ≥ fω4

δ=
ffiffiffi
ν

p
δ2½sinðωδTÞ−

ωδT cosðωδTÞ�2g. The dashed line in Fig. 2(d) corresponds
to this ultimate sensitivity bound. It also demonstrates that
the ultimate precision of the Hermitian sensor always
exceed the corresponding non-Hermitian sensor.
Summary and discussion.—In summary, we have unvei-

led the fundamental sensitivity limit for non-Hermitian
sensors in the context of open quantum systems. Our results
indicate clearly that non-Hermitian sensors do not outper-
form their Hermitian counterparts. In fact, when comparing
the performance of quantum sensors, it is essential to fix the
quantum resources consumed by these sensors. Actually,
when resources are unlimited, even ideal Hermitian sensors
can theoretically achieve arbitrary precision. However, in
practical sensing scenarios, resources are always limited.
The number of probes, sensing time, and the number of
trials are examples of limited resources. As a result,
achieving arbitrary precision is not possible in practical
sensing scenarios. The aforementioned instances are char-
acterized by a single probe. Notably, although these cases
exhibit divergence in certain measurable quantities, it does
not imply that the sensitivity diverges, leading to “arbitrary
precision,” since the sensitivity of their Hermitian counter-
parts does not diverge (even without Heisenberg scaling for
only N ¼ 1).
In Ref. [22], a sensing scheme utilizing an experimen-

tally realized PT -symmetric system was reported to
enhance the sensitivity by a factor of 8.856 over a conven-
tional Hermitian sensor. However, this enhancement is
probably attributed to the choice of nonoptimal initial probe
state used for the Hermitian sensor, and similarly these
seeming sensitivity enhancements in Refs. [25,26] may not
exist if making comparison over optimal probe states.
Furthermore, non-Hermitian lattice systems utilizing the

skin effect [10,11] or the nonreciprocity [12], have claimed
exponential scaling of sensitivity with the lattice size.
However, our theory shows that the ultimate sensitivity
should not depend on the lattice size, as it is solely
determined by the subsystem dimension that directly
couples to the parameter. Nevertheless, for nonoptimal
probe states or measurements, the sensitivity may still
depend on the lattice size.
Although our work demonstrates that coupling to the

environment cannot improve the ultimate sensitivity, when
the probe state or the measurement protocol is restricted,
adding appropriate auxiliary Hamiltonian may be helpful
for approaching the ultimate sensitivity bound [59–61]. In
fact, when the parameter couples to the environment, the
bounds presented in Eqs. (2) and (4) remain applicable,
albeit ∂Hλ=∂λ now depends on the environment’s degrees
of freedom. In addition, while our study focuses on non-
Hermitian sensors implemented by full quantum systems
[62–64], scrutinizing non-Hermitian sensors based on
classical or quasiclassical systems [29] through the per-
spective of conservation of information is a compelling
avenue for future research.
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