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Hui Chen    3,4, Andreas P. Schnyder    7, Xianxin Wu    8 , Xiaoli Dong    3,4, 
Jiangping Hu    3,4, Haitao Yang    3,4, Hong-Jun Gao    3,4  & Ming Shi    1,9 

Electronic nematicity that spontaneously breaks rotational symmetry 
is a generic phenomenon in correlated quantum systems including 
high-temperature superconductors and the AV3Sb5 (A can be K, Rb or Cs) 
family of kagome superconductors. However, the underlying mechanism of 
nematicity in these systems is hard to identify because of its entanglement 
with other ordered phases. Recently, a family of titanium-based kagome 
superconductors ATi3Bi5 have been synthesized, where electronic 
nematicity occurs in the absence of charge order. It provides a platform to 
study nematicity in its pure form, as well as its interplay with orbital degrees 
of freedom. Here we reveal the band topology and orbital characters of 
the multiorbital RbTi3Bi5. We use polarization-dependent angle-resolved 
photoemission spectroscopy with density functional theory to identify the 
coexistence of flat bands, type-II Dirac nodal lines and non-trivial topology 
in this compound. Our study demonstrates the change in orbital character 
along the Fermi surface contributed by the kagome bands, implying a strong 
intrinsic interorbital coupling in the Ti-based kagome metals. Furthermore, 
doping-dependent measurements uncover the orbital-selective features 
in the kagome bands, which can be explained by d–p hybridization. Hence, 
interorbital coupling together with d–p hybridization is probably the origin 
of electronic nematicity in ATi3Bi5.

Electronic nematicity and its fluctuations, which are present in numer-
ous strongly correlated materials1–9, are arguably linked to emergent 
superconductivity. However, understanding the underlying driving 
force behind electronic nematicity remains a central challenge in 
the study of correlated quantum systems. In the case of iron-based 
superconductors, the resolution of this question is complicated by 
the convoluted interplay between spin, orbital and lattice degrees 
of freedom10. Similarly, in the cuprate high-temperature supercon-
ductors, the entanglement of nematicity with charge (density wave) 

order poses difficulties in unravelling its origin11. The kagome lat-
tice—a corner-sharing triangle network—has emerged as one of the 
most fundamental systems for investigating exotic correlated and 
topological quantum states. Due to its frustrated lattice geometry 
and unique correlation effects embedded in flat bands and Van Hove 
singularities12–19, a wide range of electronic instabilities and non-trivial 
topologies have been observed, including quantum spin liquid20–23, 
Dirac/Weyl semimetals24–26, charge density wave (CDW) orders12–14 
and unconventional superconductivity12–14,27. Within this realm, 
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functional theory (DFT) calculations, we systematically investigate the 
electronic structure of the Ti-based kagome metal RbTi3Bi5. We observe 
several inter-related topological band features, namely, type-II Dirac 
nodal lines and non-trivial ℤ2 topological states, as well as characteristic 
flat bands of the kagome lattices. Remarkably, combined with DFT 
calculations, our polarization-dependent ARPES measurements reveal 
the change in orbital character along the ̄Γ–M̄ and ̄Γ–K̄ directions, sug-
gesting a strong intrinsic interorbital coupling in Ti-based kagome 
metals, reminiscent of iron-based superconductors. Doping-dependent 
measurements uncover the orbital-selective features in the kagome 
bands, which is explained by the d–p hybridization. The observed 
interorbital coupling and d–p hybridization not only account for the 
electronic nematicity in ATi3Bi5 but also give deeper insights into the 
origin of nematicity in kagome superconductors. In particular, we show 
the implications of the intrinsic orbital-bond nematic orders in the 
kagome lattice and establish ATi3Bi5 as an ideal system where electronic 
nematicity can be studied in its pure form, unperturbed by other  
intervening orders.

RbTi3Bi5 crystallizes in a layered hexagonal lattice consisting of 
alternately stacked Ti–Bi sheets and Rb layers (Fig. 1a(i),(ii)). It shares 
the same crystal structure as AV3Sb5, but with a kagome net of Ti atoms 
replacing V. The corresponding bulk Brillouin zone (BZ) and the pro-
jected two-dimensional BZ on the (001) surface are illustrated in  

vanadium-based superconductors AV3Sb5 (where A can be K, Rb or 
Cs)28,29 have attracted much attention recently because they exhibit 
intriguing similarities to correlated electronic phenomena observed 
in high-temperature superconductors, such as a pair density wave30, 
time-reversal symmetry-broken CDW31,32 and electronic nematicity33. 
However, the nematic order in AV3Sb5 is entangled with the CDW, mak-
ing understanding its origin challenging.

Very recently, a new family of Ti-based kagome metals ATi3Bi5, 
which are isostructural with AV3Sb5, have been synthesized34. Despite 
the distinct 3d electronic configuration of Ti atoms compared with 
V atoms, superconductivity occurs at an onset temperature (Tc) of 
about 4.8 K. The strong spin–orbit coupling (SOC) from Bi atoms 
can generate intriguing non-trivial topological phenomena. In stark 
contrast to AV3Sb5, transport measurements on ATi3Bi5 show no evi-
dence of a CDW state34,35. Interestingly, an electronic nematicity with 
rotational symmetry breaking is discovered in the absence of a con-
comitant translational symmetry breaking36,37, similar to iron-based 
high-temperature superconductors. Therefore, ATi3Bi5 is a tantalizing 
system for understanding the mechanism behind electronic nematic-
ity and its interplay with intertwined correlated quantum phenomena, 
such as superconductivity.

In this work, combining high-resolution polarization-dependent 
angle-resolved photoemission spectroscopy (ARPES) and density 
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Fig. 1 | Crystal structure and calculated band structure of RbTi3Bi5. a, Unit cell 
of RbTi3Bi5 with two types of Bi atoms indicated (i), top view showing the kagome 
plane (ii) and the three sublattices (referred to as A, B and C) in the kagome lattice 
(iii). b, Bulk BZ of RbTi3Bi5 and the projection of the (001) surface BZ. c, Magnetic 
susceptibilities under various magnetic fields for H ∥ c, showing the magnetic-

shielding effect. d, Temperature-dependent resistivity under zero magnetic field. 
The inset shows the superconducting transition with Tonset

c  ≈ 4.2 K and 
Tzero
c  ≈ 3.9 K. e,f, DFT-calculated electronic structure of RbTi3Bi5 without SOC  

(e) and with SOC (f). The arrows in e and f indicate the DP (red), type-II DP (green) 
and SOC gap (black). The grey shading highlights the flat band.
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Fig. 1b, with the high-symmetry points indicated. Magnetic susceptibil-
ity (Fig. 1c) and resistivity (Fig. 1d) measurements show a superconduct-
ing transition in RbTi3Bi5 at an onset Tc value of about 4.2 K, which is 
slightly lower than that in CsTi3Bi5 (ref. 36). The band structure of 
RbTi3Bi5 from DFT calculations without/with SOC is displayed in Fig. 
1e,f (Fig. 2b,c). The characteristic band feature of the kagome lattice, 
for example, the flat band, emerges around a binding energy (EB) of 
0.3 eV (Fig. 1e,f, grey-coloured region) and a Dirac point (DP) occurs 
above the Fermi level (EF) at the K̄ point (Fig. 1e, red arrow and circle). 
A detailed examination of the band structure of Ti-based kagome met-
als along the out-of-plane momentum reveals a type-II Dirac nodal line 
(Figs. 1e,f and 2b, green circle; Supplementary Fig. 1). The type-II nodal 

line is protected by a mirror symmetry when the SOC is ignored. With 
the further inclusion of SOC, a negligible gap opens at the type-II nodal 
line, distinct from the pronounced gaps that open at the DP at the K̄ 
point (Fig. 1f) and at the trivial band-crossing points (Figs. 1f and 2b,c, 
black arrows). To gain an insight into the electronic nematicity and 
search for the non-trivial band topology, we employ polarization- 
dependent ARPES to systematically study the electronic structure of 
single-crystal RbTi3Bi5.

In Fig. 2d(i), we first present the measured Fermi surface sheets, 
which consist of one circle-like and two hexagonal-like electron pockets 
near the zone centre ( ̄Γ point), one rhombic-like hole pocket at the zone 
boundary (M̄) and one triangle-like electron pocket near the zone 
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the SOC gap. g, Experimental geometry of the polarization-dependent ARPES 
measurements. h, Orbital-resolved DFT band dispersion originating from 
sublattice A (Fig. 1a(iii)), along the K–Γ–M–K path (black arrow in a). i, Destructive 
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expected flat band and DP (ii). j, Zoomed-in second-derivative plots with respect 
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box in e and f, respectively. k, EDCs of e(iii). l, EDCs of f(iii).
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corner (K̄), which agree well with the theoretical calculations (Fig. 2a). 
The dispersive nature of the bands contributing to the Fermi surface 
is revealed along two representative high-symmetry paths, namely, 
the ̄Γ–M̄ (Fig. 2e) and ̄Γ–K̄ (Fig. 2f) directions (the four bands crossing 
EF are denoted as α, β, γ and δ hereafter). Due to the multiorbital nature 
of the Ti d orbitals, ARPES measurements of the band structure are 
strongly sensitive to photon polarization. In principle, according to 
the selection rules in photoemission38, the bands can be selectively 
detected depending on their symmetry with respect to the mirror plane 
formed by the photon beam, sample and spectrometer (Fig. 2g). By 
exploiting these selection rules, the bands’ characters can be experi-
mentally determined (Supplementary Fig. 2 shows the details of the 
matrix element analysis under our ARPES geometry). For instance, the 
β and γ bands are selectively detected by linear vertical (LV) polarization 
(Fig. 2e(iii)) along the ̄Γ–M̄ direction, indicating an odd symmetry (that 
is, dyz and dxy orbitals) with respect to the mirror plane; meanwhile, 
along the ̄Γ–K̄ direction, the β and γ bands are detected by LV polariza-
tion (Fig. 2f(iii)) and linear horizontal (LH) polarization (Fig. 2f(ii)), 
respectively. If the β and γ bands retain their orbital characters along 
the ̄Γ–M̄ and ̄Γ–K̄ directions, they would—in principle—be assigned to 
the dxy and dyz orbitals, respectively. However, this apparently contra-
dicts the orbital characters from the theoretical calculation36 (Sup-
plementary Fig. 2). This motivates us to consider the interorbital 
coupling among the non-degenerate orbitals (dyz/dxz, and dxy/dx2−y2) in 
the kagome lattice. In Fig. 2h, we show the calculated orbital-resolved 
band dispersion originating from sublattice A (Fig. 1a(iii)), invariant 
under mirror reflection Mxz and Myz, where the β (γ) bands along the 
Γ–M and Γ–K directions mainly comprise the dyz (dxy) and dxz (dx2−y2) 
orbitals, respectively. The variation in orbital characters along different 
paths is consistent with the results from the polarization-dependent 

measurements (Fig. 2e(ii),(iii),f(ii),(iii) and Supplementary Fig. 2), 
implying a strong intrinsic interorbital coupling in Ti-based  
kagome metals.

The experimental band dispersions (Fig. 2e,f) also show good 
overall agreement with the DFT calculations (Figs. 1f and 2b,c). As 
shown in Fig. 2e(i),(iii), as EB increases, the β and γ bands separated 
at EF (Fig. 2d(i) and Fig. 2e(i),(iii)) evolve to intersect near EB = 0.25 eV  
(Fig. 2d(ii) and Fig. 2e(i),(iii)), forming the predicted type-II DP (Fig. 2b 
and Supplementary Fig. 1). As expected from the destructive interfer-
ence of hopping in the frustrated kagome lattice (Fig. 2i) and the DFT 
calculations in RbTi3Bi5 (Figs. 1e,f and 2b,c), a strikingly non-dispersive 
feature near EF at around EB = 0.25 eV is revealed (Fig. 2e(i),f(i)). Accord-
ingly, as shown in the constant-energy contour at EB = E1 (Fig. 2d(ii)), 
the spectral weight of this feature is uniformly distributed almost 
across the entire two-dimensional momentum space. The flat feature 
is more evident under LV-polarized light (Fig. 2e(iii),f(iii),j) and further 
evidenced by the non-dispersive peak in the energy distribution curves 
(EDCs) (Fig. 2k,l, red-shaded area).

Besides the type-II Dirac nodal line and flat bands, the high resolu-
tion in the ARPES measurement allows us to reveal some fine structures 
in band dispersions. As shown in Fig. 2f(i),(ii), a double-band splitting 
is observed in the γ and ε bands along the ̄Γ–K̄ path, more clearly 
revealed in the second-derivative plot (Fig. 2f(ii), arrows). Furthermore, 
the effect of SOC on band dispersions, that is, the SOC-associated gaps, 
are directly seen (Fig. 2e(i),f(i), black arrows). Apparently, the 
DFT-calculated bands with SOC (Fig. 2b,c) can better capture the experi-
mental band structure in RbTi3Bi5 (Fig. 2e,f and Supplementary Fig. 3). 
The prominent SOC promotes the existence of the topologically 
non-trivial Dirac surface states (TDSSs) predicted by the ab initio 
calculations34,39,40.

–1.2

–0.8

–0.4

0

–0.4 0 0.4

–0.4

0

0.4

k y
 (1

/Å
)

–0.4 0 0.4

–0.4

0

0.4

k y
 (1

/Å
)

–0.4 0 0.4

kx (1/Å)

–0.4

0

0.4

k y
 (1

/Å
)

–1.2

–0.8

–0.4

0

E 
– 

E F (
eV

)

–0.5 0 0.5

kx (1/Å)

–1.2

–0.8

–0.4

0

E 
– 

E F (
eV

)

E 
– 

E F (
eV

)

1.00.50

ky (1/Å)

DP

EDP

EDP + 0.06

EDP + 0.12

EDP + 0.18

EDP – 0.06

EDP – 0.12

Bi
nd

in
g 

en
er

gy
 (e

V)

–0.4
0

0.4

kx (1/Å)

–0.4
0

0.4

k
y  (1/Å)

M

K

M K

EDP + 0.12

EDP – 0.12

a

(i)

(ii)

(iii)

(iv)

b

c

d

(i)

(ii)

e

Lo
w

H
ig

h

C

C

(ii)

DP

E 
– 

E F
 (e

V)

–1.2

–0.8

–0.4

0

DP TDSSs

SSs

SSs

(i)

Low High

Γ

Γ

Γ

KM M

KM M

M M

M M

M M

Γ K

Bulk states

Bulk states + SSs

EDP

Γ

ΓΓ
Γ

Fig. 3 | ℤ2 topological surface states in RbTi3Bi5. a, Constant-energy contours at 
+0.12 eV (i), 0 eV (ii) and –0.12 eV (iii) with respect to EDP, as well as the stacking 
plots (iv). b, Experimental band dispersion along the ̄Γ–M̄ direction (i) and an 
enlarged plot of dispersion near the DP (ii). c, Same data as in b, but along the ̄Γ–K̄ 
direction. d,e, The (001) surface Green function projection of pure bulk states  

(d) and the theoretical surface spectra (bulk states and surface states (SSs))  
(e). Zoomed-in plot of the calculated dispersion (e(i)), revealing the TDSSs shown 
in e(ii). Besides the TDSSs, the calculations also identify SSs along the ̄Γ–K̄ path 
(green arrow in e(i)); however, these states may overlap with the bulk states.

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | December 2023 | 1827–1833 1831

Article https://doi.org/10.1038/s41567-023-02215-z

TDSSs originating from a ℤ2 bulk topology are indeed observed 
in RbTi3Bi5 (Fig. 3). A series of experimental constant-energy con-
tours (Fig. 3a), measured from +0.18 to –0.12 eV with respect to EDP 
(binding energy of the DP), clearly show the evolution of TDSSs in 
the energy space around the ̄Γ  point. To closely visualize the 
momentum-space structure of the Dirac bands, we show the band 
dispersions along two different high-symmetry directions, namely, 
̄Γ–M̄ (Fig. 3b) and ̄Γ–K̄ (Fig. 3c). Photon-energy-dependent measure-

ments reveal that Rashba-like bands (Fig. 3b(ii)) around the ̄Γ point 
do not disperse with respect to photon energy (and thus, kz), in 
contrast to the bulk states (Supplementary Fig. 4), indicating their 
two-dimensional surface nature. To investigate the topological 
nature of the Rashba-like feature, we calculated the ℤ2 topological 
invariant of the occupied bands using parity products at all the 
time-reversal invariant momenta. We found that the TDSSs originate 
from d–p band inversion around the A point (Supplementary Fig. 4). 
Figure 3d shows the calculated bulk states projected onto the (001) 
surface together with the theoretically calculated surface spectra 
(Fig. 3e(i)). The TDSSs derived from the bulk non-trivial topology 

and protected by time-reversal symmetry are theoretically identified 
around the ̄Γ point (Fig. 3e(ii)). The shape of TDSSs observed in our 
experiment (Fig. 3b(ii)) and their connection with the bulk bands are 
consistent with our theoretical calculations (Fig. 3e(ii) and Supple-
mentary Fig. 4). However, since the energy position and size of the 
surface states are highly sensitive to the details of the surface envi-
ronment, the energy position of the DP is deeper in the experiment 
(Fig. 3b(ii)) than in the calculations (Fig. 3e(ii)).

After characterizing the orbital characters and identifying the rich 
non-trivial band topology, we now demonstrate the direct manipula-
tion of electronic states via in situ surface potassium (K) deposition 
(Fig. 4a(i)). As shown in Fig. 4a(ii), the successful introduction of K 
atoms—doping on the sample surface—is confirmed by measuring the 
K 3p core level (red curve), which is absent on the pristine surface (black 
curve). To show the overall doping evolution of the band structure, we 
display the doping-dependent ARPES spectra in volume plots (Fig. 4b). 
Remarkably, on doping, the top of the δ band is tuned from well above 
to below the EF, as shown in the high-symmetry band dispersions along 
the ̄Γ–M̄ (Fig. 4c) and ̄Γ–K̄ (Fig. 4d,e) directions. This indicates that a 
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Fig. 4 | Orbital-selective doping effect and d–p hybridization in RbTi3Bi5.  
a, Sketch of in situ K deposition (i) and doping dependence of the core-level 
photoemission spectrum, showing the characteristic Rb 4s, Bi 5d and Ti 3p peaks 
(ii). On K deposition, the K 3p peak emerges (red curve), which is absent on the 
pristine surface (black curve). b, Three-dimensional intensity plot of the 
electronic structure measured on the pristine (i) and K-doped (ii) surfaces.  
c, Doping evolution of the band dispersion along the ̄Γ–M̄ direction measured  
on the pristine (i) and K-doped (ii) surfaces, probed with LH-polarized light.  
d,e, Same data as in c, but measured along the ̄Γ–K̄ direction with LH (d) and LV 
(e) polarizations. f, Doping-dependent EDCs taken around the M̄ point (i), K̄ point 

(ii) and flat band (iii). The momentum location of the EDCs (#1–#3) is marked by 
the red line in c–e, respectively. g, Ti d- and Bi p-orbital-resolved DFT band 
dispersion. h, Calculated Fermi surface showing four pockets contributed by 
different orbital bands. The scattering vectors (q1–q5) are the wavevectors of the 
quasiparticle interference patterns in scanning tunnelling microscopy/scanning 
tunnelling spectroscopy measurements36. i–k, Interorbital and intraorbital 
couplings in the Ti-based kagome lattice (i), intraorbital band order (j) and 
interorbital band order (k). The yellow background in i–k represents rotational 
symmetry breaking.
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Lifshitz transition of the Fermi surface driven by the δ band is realized 
with doping (Fig. 4b and Supplementary Fig. 5). A comparative exami-
nation of the EDCs, taken at the M̄ point, K̄ point and flat band, indicates 
that the band shift does not shift in a simple, rigid fashion (Fig. 4f); 
rather, the shift is strongly orbit dependent. Specifically, after doping, 
the hole-like ζ1 and ζ2 bands around the M̄ point shift by about 60 and 
90 meV (Fig. 4f(i), EDC#1), respectively; the hole-like θ band near the 
K̄ point moves down by 320 meV (Fig. 4f(ii), EDC#2); and the flat band 
(η) along the ̄Γ–K̄ path only drops by about 40 meV (Fig. 4f(iii), EDC#3).

We next turn to discuss the implication of the observed orbital- 
selective doping effect on the kagome bands. As the kagome layers are 
embedded between two Bi layers (Fig. 1a(i)), on surface deposition, the 
electron doping in the kagome layers is mediated by coupling between 
the Bi p (Supplementary Fig. 6) and Ti d orbitals. The theoretically 
calculated orbital-resolved band structure distinguishing Ti d and Bi 
p orbitals (Fig. 4g) clearly reveals a strong d–p hybridization around EF 
in RbTi3Bi5. The mirror-even (mirror-odd) dxy/dx2−y2 (dxz/dyz) orbitals 
under mirror reflection Mxy in the Ti-kagome plane couple with px/y 
bonding (antibonding) orbitals of honeycomb Bi atoms above and 
below. Interestingly, d–p coupling along the Γ–K path is stronger than 
that along the Γ–M one. The bands (θ and electron-like γ) around the K 
point and the hole-like δ band around the M point have the strongest 
d–p coupling, echoing the pronounced energy shifts observed on these 
bands on surface K deposition (Fig. 4c–f(ii) and Supplementary Fig. 7 
describe the simulations). This d–p scenario can also account for the 
revealed double-band splittings (in the γ and ε bands) along the ̄Γ–K̄ 
path (Fig. 2f(i),(ii)), one of which could be assigned to the surface band 
and the other to bulk states (Supplementary Fig. 8). As the exposed 
honeycomb Bi2 layers (Fig. 1a(i)) experience a surface potential, the 
surface bands with strong d–p coupling can be split from their corre-
sponding bulk bands, resulting in a double-band splitting.

Reminiscent of our finding, prominent nematic features in the 
scanning tunnelling microscopy measurement are observed from the 
intraband scattering between the electron pocket (that is, the γ band 
with dxz/dyz orbitals) around the K̄ point (Fig. 4h, wavevector q3) and 
between the dxy/dx2−y2  electron pocket around the ̄Γ point (Fig. 4h, 
wavevector q4)36,37, and the corresponding quasiparticle interference 
pattern along ̄Γ–K̄ appears to have stronger C6-symmetry-breaking 
signatures. The electronic states connected by the q3 and q4 wavevec-
tors show pronounced d–p coupling (Fig. 4g), suggesting the important 
role of d–p hybridization in promoting nematicity. Moreover, the 
quasiparticle interference at q3 (q4) involves both intraorbital and 
interorbital dxz/dyz (dxy/dx2−y2) scattering. In the kagome lattice with 
three sublattices, the site symmetry is D2h, and thus, all the five orbitals 
on each site are non-degenerate. In hexagonal systems, nematicity has 
a unique three-state Potts character41,42, distinct from the Ising-like 
features in tetragonal systems. Accordingly, the simplest nematic order 
to break the C6 rotational symmetry is an onsite sublattice potential, 
but it induces a uniform symmetry-breaking feature in momentum 
space, which is inconsistent with the scanning tunnelling microscopy 
measurements36,37. Given the observed interorbital coupling  
(Fig. 2a,e,f,h), an alternative scenario is intra- or interorbital bond order, 
where a stronger bonding (Fig. 4i–k, thick line) between certain sites 
breaks the six-fold rotational symmetry but preserves the two-fold 
rotational symmetry (Fig. 4i–k) (for example, dxz/dyz orbitals). It is 
expected to display noticeable momentum-dependent nematic fea-
tures. The effective hopping between d orbitals through Bi px/y orbitals 
can become nematic once the degeneracy of the px/y orbitals is lifted. 
Importantly, a strong d–p hybridization can make the Ti 3d orbitals 
more extended and therefore enhance the non-local Coulomb interac-
tion, which can promote the nematic bond order13,43.

Our ARPES results, combined with DFT calculations, identify a 
remarkable coexistence of flat bands and non-trivial band topology 
(that is, type-II Dirac nodal line and non-trivial ℤ2 topology) in the 
Ti-based kagome superconductor RbTi3Bi5. The Ti d orbital contributes 

to the type-II nodal lines and flat bands, whereas the ℤ2 bulk topology 
derived from d–p band inversion gives rise to TDSSs. These observations 
are closely inter-related through the kagome lattice, and call for future 
investigations into their topological contributions to transport proper-
ties and related potential applications. Remarkably, by exploiting 
polarization-dependent ARPES, our study reveals an intricate change 
in orbital character along the ̄Γ–M̄ and ̄Γ–K̄ directions (Fig. 2a,h), imply-
ing a strong interorbital coupling in the Ti-based kagome lattice in 
contrast to AV3Sb5 (ref. 19). The emergence of electronic nematicity in 
the absence of CDW and the presence of interorbital coupling in RbTi3Bi5 
are reminiscent of iron-based superconductors, where the dxz/dyz orbit-
als are degenerate in tetragonal systems. However, the two sets of dxz/dyz 
and dxy/dx2−y2 orbitals in RbTi3Bi5, due to the D2h site symmetry group, 
are non-degenerate, making the Ti-based kagome metals unique and 
distinct from iron-based superconductors. Additionally, our 
doping-dependent measurements directly uncover the orbital-selective 
characters in the multiorbital kagome system. The revealed d–p hybridi-
zation, together with interorbital coupling, provides a qualitative expla-
nation for the electronic nematicity in ATi3Bi5. Taken together, our 
findings demonstrate that RbTi3Bi5 is a versatile platform for investigat-
ing exotic topological and correlated states, and offer valuable insights 
into the origin of nematic orders that are present in numerous corre-
lated systems competing with superconductivity.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
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Methods
Single-crystal growth and in situ doping
Single crystals of RbTi3Bi5 were synthesized using the self-flux method, 
as reported elsewhere34. Electron doping was achieved by in situ surface 
K deposition (at 20 K) on RbTi3Bi5 samples.

ARPES measurements
The ARPES measurements were carried out at the ULTRA endstation of 
the Surface/Interface Spectroscopy (SIS) beamline of the Swiss Light 
Source, using a Scienta Omicron DA30L analyser. The measurements 
were performed with 64 eV photons and a total energy resolution of 
15 meV. The samples were cleaved in situ with a base pressure of better 
than 5 × 10−11 torr, and measured at 20 K. The Fermi level was determined 
by measuring polycrystalline Au in electrical contact with the samples.

Computational methods
Band structure calculations were performed by using the method of 
first-principles DFT as implemented in the Vienna ab initio simulation 
package code44–46. The Perdew–Burke–Ernzerhof exchange–correla-
tion functional and the projector augmented wave approach are used. 
Throughout this work, the cutoff energy is set to 500 eV for expanding 
the wavefunctions into the plane-wave basis, and SOC is included. The 
BZ is sampled in the k space within the Monkhorst–Pack scheme47, and 
the k mesh used is 9 × 9 × 5 on the basis of the equilibrium structure. 
We adopt the experimental parameters in the calculation. To get the 
tight-binding Hamiltonian, we create Wannier functions via the wan-
nier90 package48 with a projection of the Bloch states to the atomic 
orbitals, and then use this Hamiltonian to calculate the surface states 
using the surface Green function49.
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